Protection C13-100 des postes de livraison en régime de neutre compensé et impédant

Sepam série 48

Manuel d'utilisation 02/2017

Consignes de sécurité

Messages et symboles de sécurité

Veuillez lire soigneusement ces consignes et examiner l'appareil afin de vous familiariser avec lui avant son installation, son fonctionnement ou son entretien. Les messages particuliers qui suivent peuvent apparaître dans la documentation ou sur l'appareil. Ils vous avertissent de dangers potentiels ou attirent votre attention sur des informations susceptibles de clarifier ou de simplifier une procédure.

Risque de chocs électriques

La présence d'un de ces symboles sur une étiquette de sécurité "Danger" ou "Avertissement" collée sur un équipement indique qu'un risque d'électrocution existe, pouvant provoquer la mort ou des lésions corporelles si les instructions ne sont pas respectées.

Alerte de sécurité

Ce symbole est le symbole d'alerte de sécurité. Il sert à alerter l'utilisateur de risques de blessures corporelles et l'inviter à consulter la documentation. Respectez toutes les consignes de sécurité données dans la documentation accompagnant ce symbole pour éviter toute situation pouvant entraîner une blessure ou la mort.

Messages de sécurité

DANGER

DANGER indique une situation dangereuse entraînant la mort, des blessures graves ou des dommages matériels.

A AVERTISSEMENT

AVERTISSEMENT indique une situation présentant des risques susceptibles de provoquer la mort, des blessures graves ou des dommages matériels.

A ATTENTION

ATTENTION indique une situation potentiellement dangereuse et susceptible d'entraîner des lésions corporelles ou des dommages matériels.

Remarques importantes

Réserve de responsabilité

L'entretien du matériel électrique ne doit être effectué que par du personnel qualifié. Schneider Electric n'assume aucune responsabilité des conséquences éventuelles découlant de l'utilisation de cette documentation. Ce document n'a pas pour objet de servir de quide aux personnes sans formation.

Fonctionnement de l'équipement

L'utilisateur a la responsabilité de vérifier que les caractéristiques assignées de l'équipement conviennent à son application. L'utilisateur a la responsabilité de prendre connaissance des instructions de fonctionnement et des instructions d'installation avant la mise en service ou la maintenance, et de s'y conformer. Le non-respect de ces exigences peut affecter le bon fonctionnement de l'équipement et constituer un danger pour les personnes et les biens.

Mise à la terre de protection

L'utilisateur a la responsabilité de se conformer à toutes les normes et à tous les codes électriques internationaux et nationaux en vigueur concernant la mise à la terre de protection de tout appareil.

Sommaire

Introduction
Fonctions de mesure
Fonctions de protection
Fonctions de commande et de surveillance
Communication Modbus
Installation
Utilisation
Mise en service

Informations nécessaires à la commande

6

Sepam série 48

Sommaire

Présentation	1/2
Tableau de choix	1/3
Caractéristiques électriques	1/4
Caractéristiques d'environnement	1/5
Informations spécifiques EDF	1/6

Sepam série 48 avec IHM avancée.

La famille d'unités de protection et de mesures Sepam série 48 est destinée à assurer 2 niveaux de protection en HTA :

- contre les défauts dans les installations HTA clients : protection générale des postes de livraison suivant la norme NF C13-100
- contre les défauts du réseau HTA EDF : protection de découplage selon GTDE B6141 qui permet de découpler les sources de production du réseau (évite d'alimenter le défaut par l'aval).

La famille Sepam série 48 se compose de solutions simples et performantes, adaptées aux applications exigeantes nécessitant la mesure des courants et des tensions.

Principales fonctions

Protections

- protection phase et protection terre à temps de retour ajustable, avec basculement du jeu de réglage actif et sélectivité logique
- protection terre insensible aux enclenchements des transformateurs
- protection directionnelle de terre adaptée au régime du neutre compensé (PWH).

Communication

Sepam série 48 est totalement compatible avec le standard de communication **Modbus.**

Toutes les informations nécessaires pour exploiter l'équipement à distance depuis un superviseur sont accessibles par le port de communication Modbus :

- en lecture : toutes les mesures, les alarmes, les réglages,...
- en écriture : les ordres de télécommande de l'appareil de coupure,... .

Diagnostic

3 types d'information de diagnostic pour une meilleure exploitation :

- diagnostic réseau : courant de déclenchement, contexte des 5 derniers déclenchements, taux de déséquilibre, oscilloperturbographie
- diagnostic appareillage : ampères coupés cumulés, surveillance du circuit de déclenchement, temps de manœuvre
- diagnostic de l'unité de protection et de ses modules complémentaires : autotests permanents, chien de garde.

Commande et surveillance

- logique de commande disjoncteur prête à l'emploi, ne nécessitant ni relayage auxiliaire ni câblage complémentaire
- adaptation des fonctions de commandes grâce à un éditeur d'équations logiques
- messages d'alarmes sur IHM avancée préprogrammés et personnalisables.

| Composer of distribution | Proc. | P

Exemple d'écran du logiciel SFT2848 (IHM expert).

Interface Homme Machine

Sepam dispose en face avant d'une Interface Homme Machine avancée, composée d'un afficheur LCD "graphique" et d'un clavier de 9 touches. Cette IHM permet l'affichage des valeurs de mesure et de diagnostic, des messages d'alarmes et d'exploitation et l'accès aux valeurs de réglage et de paramétrage, pour les installations exploitées localement.

Logiciel IHM expert

Le logiciel **SFT2848** sur PC donne accès à toutes les fonctions de Sepam, avec toutes les facilités et tout le confort offerts par un environnement de type Windows.

Fichiers de pré-paramétrage

Pour chaque application, est fourni un fichier de pré-paramétrage (répertoire : CD Serie 48\Pré paramétrage\Fichiers) qui permet de configurer et de paramétrer le Sepam série 48 pour une utilisation nominale répondant au cahier des charges EDF. Un fichier de documentation du paramétrage associé au fichier de pré-paramétrage (répertoire : CD Serie 48\Pré paramétrage\Documentation) permet de décrire les entrées / sorties utilisées, les réglages des protections et la signalisation en face avant.

Fonctions	Code Application ANSI Poste de livraison sa génération					Applications Poste de livraison avec génération						
B61.41 ⁽⁴⁾		E11	E12	E13	types H.1 à H.5 et F.1	types B.1 et B.2	types F.2 à F.5	types H.1 à H.5 et F.1	E23 types H.1 à H.5 et F.1	types F.2 à F.5	types F.2 à F.5	
C13100		NC	NI	NC	-	-	-	NI	NC	NI	NC	
Protections												
Maximum de courant phase	51		4	4				4	4	4	4	
Maximum de courant terre, terre sensible	51N	4	4	4				4	4	4	4	
Protection Wattmétrique Homopolaire	32N	2		2					2		2	
Maximum de tension résiduelle	59N	2		2	2			2	2		2	
Maximum de tension phase (1)	59				2	2		2	2			
Minimum de tension phase (1)	27				2	2	2	2	2	2	2	
Maximum de fréquence	81H				2	2		2	2			
Minimum de fréquence	81L				4	4		4	4			
Retour de puissance active	32P						1			1	1	
Mesure												
Courant phase I1, I2, I3 RMS, courant résiduel I0		10 (3)	-									
Courant moyen I1, I2, I3, maximètre courant IM1, IM2, M3		-	•	•			•	•	•	•	-	
Tension U21, U32, U13, V1, V2, V3, tension résiduelle		(3))	•	•	V _X ⁽²⁾	•	•	•		•	
Tension directe Vd / sens de rotation				_	•		•	•	•	•	•	
Tension inverse Vi				-	-		-	<u> </u>	<u> </u>	-	•	
Fréquence		(3))	-	-		-	<u> </u>	-	-	-	
Puissance apparente, active et réactive P, Q, Maximètre, Facteur de puissance		.,,	·	•			•	-	-	-	-	
<u> </u>												
Energie active et réactive calculée (±W.h, ±var.h) Energie active et réactive par comptage d'impulsions												
(±W.h, ±var.h)					<u> </u>		<u> </u>				<u> </u>	
Diagnostic réseau			_	_			_	_	_	_	_	
Courant de déclenchement I1, I2, I3, I0			-	-			_			_	_	
Contexte de déclenchement			•	•							-	
Taux de déséquilibre / courant inverse li												
Déphasage φ0, φ1, φ2, φ3		φ0								•		
Oscilloperturbographie		•	•	-	•	•	•	•	•	•	•	
Diagnostic appareillage												
Ampères coupés cumulés												
Surveillance circuit de déclenchement Nombre de manœuvres, temps de manœuvre,												
temps de réarmement												
Surveillance TC/TP	60FL		TC	-	TP		•	•	•	•	•	
Commande et surveillance												
Commande disjoncteur	94/69											
Accrochage / acquittement	86					•				•		
Sélectivité logique	68											
Basculement jeux de réglages					•							
4 sorties logiques adressables												
Editeur d'équations logiques (et, ou,)		•	•	•								
Modules complémentaires												
1 module adaptateur TT (CAT648)		•										
I sortie analogique bas niveau - Module MSA141												
Entrées / sorties logiques - Module MES114					•		•		•	•	•	
nterface RS 485 - Module ACE949-2 (2 fils) ou ACE959 (4 fils)												
Fonctions logiques spécifiques B61.41 ⁽⁴⁾												
Régime spécial d'exploitation pour types : 1.2, H.3 et H.5					•			•	•			
Défaillance télédécouplage pour type : H.4								•	•			
Inhibition protection pour types: H.1, H.2, H.3, H.4, H.5, F.1, F.2, F.3, F.4, F.5					-		•	-	-	•	•	
F.1, F.2, F.3, F.4, F.5 Contrôle de la durée de couplage pour types : F.1, F.2												
Consignation télédécouplage pour types : F.1, F.2		ution I										

Masse						
Masse maximum (Sepam avec M	IEQ114)	1,9 kg				
` '	E3114)	1,9 kg				
Entrées analogiques						
Transformateur de courant ⁽³⁾		Impédance d'entre	ée	< 0,02		
TC 1 A ou 5 A (avec CCA630)		Consommation		< 0,02	VA à 1 A	
Calibre de 1 A à 6250 A				< 0,5 V	A à 5 A	
		Tenue thermique	permanente	4 In		
		Surcharge 1 seco	onde	100 ln	(500 A)	
Transformateur de tension		Impédance d'entr	ée	> 100 k	Ω	
Calibres de 220 V à 250 kV		Tension d'entrée		100 à 2	230/√3 V	
		Tenue thermique	permanente	240 V		
		Surcharge 1 seco	onde	480 V		
Entrées logiques		MES114	MES114E		MES114F	
Tension		24 à 250 V CC	110 à 125 V CC	110 V CA	220 à 250 V CC	220 à 240 V CA
Plage		19,2 à 275 V CC	88 à 150 V CC	88 à 132 V CA	176 à 275 V CC	176 à 264 V CA
Fréquence		-	-	47 à 63 Hz	-	47 à 63 Hz
Consommation typique		3 mA	3 mA	3 mA	3 mA	3 mA
Seuil de basculement typique		14 V CC	82 V CC	58 V CA	154 V CC	120 V CA
Tension limite d'entrée	A l'état 1	≥ 19 V CC	≥ 88 V CC	≥ 88 V CA	≥ 176 V CC	≥ 176 V CA
	A l'état 0	≤6 V CC	≤ 75 V CC	≤ 22 V CA	≤ 137 V CC	≤ 48 V CA
Isolation des entrées par rapport		Renforcée	Renforcée	Renforcée	Renforcée	Renforcée
aux autres groupes isolés						
Sorties à relais						
Sorties à relais de commar	nde (contacts O1, O2, O3	3, O11) ⁽²⁾				
Tension	Continue	24 / 48 V CC	127 V CC	220 V CC	250 V CC	-
	Alternative (47,5 à 63 Hz)	-	-	-	-	100 à 240 V CA
Courant permanent	, , , , , , , , , , , , , , , , , , , ,	8 A	8 A	8 A	8 A	8 A
Pouvoir de coupure	Charge résistive	8 A / 4 A	0,7 A	0,3 A	0,2 A	-
•	Charge L/R < 20 ms	6 A / 2 A	0,5 A	0,2 A	-	-
	Charge L/R < 40 ms	4 A / 1 A	0,2 A	0,1 A	-	-
	Charge résistive	-	-	-	=	8 A
	Charge cos φ > 0,3	-	-	-	-	5 A
Pouvoir de fermeture		< 15 A pendant 20	00 ms			
Isolation des sorties par rapport		Renforcée				
aux autres groupes isolés						
Sortie à relais de signalisa	tion (contacts O4, O12, C)13, O14)				
Tension	Continue	24/48 V CC	127 V CC	220 V CC	250 V CC	-
	Alternative (47,5 à 63 Hz)	=	-	-	-	100 à 240 V CA
Courant permanent		2 A	2 A	2 A	2 A	2 A
			0,6 A	0,3 A	0,2 A	_
Pouvoir de coupure	Charge résistive	2 A / 1 A				
Pouvoir de coupure	Charge L/R < 20 ms	2 A / 1 A 2 A / 1 A	0,5 A	0,15 A		-
·		2 A / 1 A			-	
Isolation des sorties par rapport	Charge L/R < 20 ms			0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés	Charge L/R < 20 ms Charge cos φ > 0,3	2 A / 1 A - Renforcée		0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a	Charge L/R < 20 ms Charge cos φ > 0,3	2 A / 1 A - Renforcée uxiliaire)		0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a	Charge L/R < 20 ms Charge cos φ > 0,3	2 A / 1 A - Renforcée		0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a Tension Plage	Charge L/R < 20 ms Charge cos φ > 0,3	2 A / 1 A - Renforcée uxiliaire)		0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a Tension Plage	Charge L/R < 20 ms Charge cos φ > 0,3	2 A / 1 A - Renforcée IXIIIaire) 24 / 250 V CC		0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a Tension Plage Consommation veille (1)	Charge L/R < 20 ms Charge cos φ > 0,3	2 A / 1 A - Renforcée JXIIIaire) 24 / 250 V CC -20 % +10 %		0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a Tension Plage Consommation veille (1) Consommation maximum (1)	Charge L/R < 20 ms Charge cos φ > 0,3	2 A / 1 A - Renforcée JXIIIaire) 24 / 250 V CC -20 % +10 % < 6 W < 11 W < 10 A pendant 10	0,5 A -	0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a Tension Plage Consommation veille (1) Consommation maximum (1) Courant d'appel	Charge L/R < 20 ms Charge cos φ > 0,3	2 A / 1 A - Renforcée IXIIIaire) 24 / 250 V CC -20 % +10 % < 6 W < 11 W < 10 A pendant 10 < 28 A pendant 10	0,5 A -	0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a Tension Plage Consommation veille (1) Consommation maximum (1) Courant d'appel Tenue aux microcoupures	Charge L/R < 20 ms Charge cos φ > 0,3 IVEC alimentation au	2 A / 1 A - Renforcée IXIIIaire) 24 / 250 V CC -20 % +10 % < 6 W < 11 W < 10 A pendant 10 < 28 A pendant 10	0,5 A -	0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a Tension Plage Consommation veille (1) Consommation maximum (1) Courant d'appel	Charge L/R < 20 ms Charge cos φ > 0,3 IVEC alimentation au	2 A / 1 A - Renforcée IXIIIaire) 24 / 250 V CC -20 % +10 % < 6 W < 11 W < 10 A pendant 10 < 28 A pendant 10	0,5 A -	0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a Tension Plage Consommation veille (1) Consommation maximum (1) Courant d'appel Tenue aux microcoupures Alimentation (poste s	Charge L/R < 20 ms Charge cos φ > 0,3 IVEC alimentation au	2 A / 1 A - Renforcée IXIIIaire) 24 / 250 V CC -20 % +10 % < 6 W < 11 W < 10 A pendant 10 < 28 A pendant 10 10 ms IXIIIaire)	0,5 A -	0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a Tension Plage Consommation veille (1) Consommation maximum (1) Courant d'appel Tenue aux microcoupures Alimentation (poste s Tension triphasée issue des TT	Charge L/R < 20 ms Charge cos φ > 0,3 IVEC alimentation au	2 A / 1 A - Renforcée IXIIIaire) 24 / 250 V CC -20 % +10 % < 6 W < 11 W < 10 A pendant 10 < 28 A pendant 10 10 ms IXIIIaire)	0,5 A - - 0 ms 00 μs	0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a Tension Plage Consommation veille (1) Consommation maximum (1) Courant d'appel Tenue aux microcoupures Alimentation (poste s Tension triphasée issue des TT Plage	Charge L/R < 20 ms Charge cos φ > 0,3 IVEC alimentation au	2 A / 1 A - Renforcée IXIIIaire) 24 / 250 V CC -20 % +10 % < 6 W < 11 W < 10 A pendant 10 < 28 A pendant 10 10 ms IXIIIaire) 57,7 V CA (tenue	0,5 A - - 0 ms 00 μs	0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a Tension Plage Consommation veille (1) Consommation maximum (1) Courant d'appel Tenue aux microcoupures Alimentation (poste s Tension triphasée issue des TT Plage Consommation veille (1)	Charge L/R < 20 ms Charge cos φ > 0,3 IVEC alimentation au	2 A / 1 A - Renforcée JXIIIaire) 24 / 250 V CC -20 % +10 % < 6 W < 11 W < 10 A pendant 10 < 28 A pendant 10 10 ms JXIIIaire) 57,7 V CA (tenue) ±5 %	0,5 A - - 0 ms 00 μs	0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a Tension Plage Consommation veille (1) Consommation maximum (1) Courant d'appel Tenue aux microcoupures Alimentation (poste s Tension triphasée issue des TT Plage Consommation veille (1) Consommation veille (1) Consommation veille (1) Consommation maximum (1)	Charge L/R < 20 ms Charge cos φ > 0,3 IVEC alimentation au	2 A / 1 A - Renforcée JXIIIaire) 24 / 250 V CC -20 % +10 % < 6 W < 11 W < 10 A pendant 10 < 28 A pendant 10 10 ms JXIIIaire) 57,7 V CA (tenue) ±5 % 2 VA / phase	0,5 A - 0 ms 00 μs	0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a Tension Plage Consommation veille (1) Consommation maximum (1) Courant d'appel Tenue aux microcoupures	Charge L/R < 20 ms Charge cos φ > 0,3 IVEC alimentation au	2 A / 1 A - Renforcée IXIIIaire) 24 / 250 V CC -20 % +10 % < 6 W < 11 W < 10 A pendant 10 < 28 A pendant 10 10 ms IXIIIaire) 57,7 V CA (tenue ±5 % 2 VA / phase 2,5 VA / phase	0,5 A - 0 ms 00 μs	0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a Tension Plage Consommation veille (1) Consommation maximum (1) Courant d'appel Tenue aux microcoupures Alimentation (poste s Tension triphasée issue des TT Plage Consommation veille (1) Consommation veille (1) Consommation veille (1) Puissance d'appel Tenue aux microcoupures	Charge L/R < 20 ms Charge cos φ > 0,3 Evec alimentation au sans alimentation au	2 A / 1 A - Renforcée IXIIIaire) 24 / 250 V CC -20 % +10 % < 6 W < 11 W < 10 A pendant 10 < 28 A pendant 10 10 ms IXIIIaire) 57,7 V CA (tenue ±5 % 2 VA / phase < 40 VA pendant	0,5 A - 0 ms 00 μs	0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a Tension Plage Consommation veille (1) Consommation maximum (1) Courant d'appel Tenue aux microcoupures Alimentation (poste s Tension triphasée issue des TT Plage Consommation veille (1) Consommation veille (1) Consommation maximum (1) Puissance d'appel Tenue aux microcoupures Sortie analogique (mo	Charge L/R < 20 ms Charge cos φ > 0,3 Evec alimentation au sans alimentation au	2 A / 1 A - Renforcée JXIIIaire) 24 / 250 V CC -20 % +10 % < 6 W < 11 W < 10 A pendant 10 < 28 A pendant 10 10 ms JXIIIaire) 57,7 V CA (tenue ±5 % 2 VA / phase 2,5 VA / phase < 40 VA pendant 1 s	0,5 A - 0 ms 00 μs e permanente à 120	0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a Tension Plage Consommation veille (1) Consommation maximum (1) Courant d'appel Tenue aux microcoupures Alimentation (poste s Tension triphasée issue des TT Plage Consommation veille (1) Consommation veille (1) Consommation maximum (1) Puissance d'appel Tenue aux microcoupures Sortie analogique (mo	Charge L/R < 20 ms Charge cos φ > 0,3 Evec alimentation au sans alimentation au	2 A / 1 A - Renforcée IXIIIaire) 24 / 250 V CC -20 % +10 % < 6 W < 11 W < 10 A pendant 10 28 A pendant 10 10 ms IXIIIaire) 57,7 V CA (tenue ±5 % 2 VA / phase 2,5 VA / phase < 40 VA pendant 1 s 4 - 20 mA, 0 - 20	0,5 A - 0 ms 00 μs e permanente à 120 1 s mA, 0 - 10 mA	0,15 A		-
Isolation des sorties par rapport aux autres groupes isolés Alimentation (poste a Tension Plage Consommation veille (1) Consommation maximum (1) Courant d'appel Tenue aux microcoupures Alimentation (poste s Tension triphasée issue des TT Plage Consommation veille (1) Consommation veille (1) Consommation maximum (1) Puissance d'appel Tenue aux microcoupures Sortie analogique (mo	Charge L/R < 20 ms Charge cos φ > 0,3 Evec alimentation au sans alimentation au	2 A / 1 A - Renforcée JXIIIaire) 24 / 250 V CC -20 % +10 % < 6 W < 11 W < 10 A pendant 10 < 28 A pendant 10 10 ms JXIIIaire) 57,7 V CA (tenue ±5 % 2 VA / phase 2,5 VA / phase < 40 VA pendant 1 s	0,5 A - 0 ms 00 μs e permanente à 120 1 s mA, 0 - 10 mA	0,15 A		-

⁽¹⁾ selon configuration.
(2) Les sorties de commande (contact O1, O2, O3, O11) sont conformes à la norme C37.90 clause 6.7, niveau 30 A, 200 ms, 2000 manœuvres.
(3) Les transformateurs de courant utilisés doivent être homologués C13-100.
Pour Statimax: 1 VA 10P30

Pour Sepam série 48 : 5 VA 5P10 ou 5 VA 5P15 suivant rapport de transformation.

Compatibilité électromagnétique Essais d'émission	Norme	Niveau / Classe	Valeur
Emission champ perturbateur	CISPR 22		
	EN 55022	A	
Emission perturbations conduites	CISPR 22		
	EN 55022	В	
Essais d'immunité – Perturbations rayonnées			
Immunité aux champs rayonnés	CEI 60255-22-3		10 V/m ; 80 MHz - 1 GHz
a.iio dax olidiipo layolilloo	CEI 61000-4-3	III	10 V/m ; 80 MHz - 2 GHz
	ANSI C37.90.2		35 V/m : 25 MHz - 1 GHz
Décharge électrostatique	CEI 60255-22-2		8 kV air ; 6 kV contact
3	ANSI C37.90.3		8 kV air ; 4 kV contact
Immunité aux champs magnétiques à la fréquence du réseau	CEI 61000-4-8	4	30 A/m (permanent) - 300 A/m (1-3 s
Essais d'immunité – Perturbations conduites			, , ,
Immunité aux perturbations RF conduites	CEI 60000-4-6		10 V
Transitoires électriques rapides en salves	CEI 60255-22-4	A ou B	4 kV ; 2,5 kHz / 2 kV ; 5 kHz
Transition of discallinguist rapides on saires	CEI 61000-4-4	IV	4 kV ; 5 kHz
	ANSI C37.90.1		4 kV ; 2,5 kHz
Onde oscillatoire amortie à 1 MHz	CEI 60255-22-1	III	2,5 kV MC ; 1 kV MD
Office Oscillatorie amortie a 1 Wil 12	ANSI C37.90.1		2,5 kV MC et MD
Onde oscillatoire amortie à 100 kHz	CEI 61000-4-12		2,5 kV MC ; 1 kV MD
			2,5 KV IVIO , I KV IVID
Onde oscillatoire amortie lente (100 kHz à 1 MHz)	CEI 61000-4-18	<u>III</u>	0.13/1404.13/140
Ondes de choc	CEI 61000-4-5	III	2 kV MC ; 1 kV MD
Interruptions de tension	CEI 60255-11	NII / 61	100 %, 20 ms
Robustesse mécanique	Norme	Niveau / Classe	Valeur
Sous tension			
Vibrations	CEI 60255-21-1	2	1 Gn ; 10 Hz - 150 Hz
	CEI 60068-2-6	Fc	2 Hz - 13,2 Hz ; a = ±1 mm (±0.039 in
Chocs	CEI 60255-21-2	2	10 Gn / 11 ms
Séismes	CEI 60255-21-3	2	2 Gn horizontal
		_	1 Gn vertical
Hors tension			
Vibrations	CEI 60255-21-1	2	2 Gn ; 10 Hz - 150 Hz
Chocs	CEI 60255-21-2	2	30 Gn / 11 ms
Secousses	CEI 60255-21-2	2	20 Gn / 16 ms
Tenue climatique	Norme	Niveau / Classe	Valeur
	NOTTHE	Niveau / Classe	valeui
En fonctionnement	051 00000 0 4		05.00 (40.05)
Exposition au froid	CEI 60068-2-1	Ad	-25 °C (-13 °F)
Exposition à la chaleur sèche	CEI 60068-2-2	Bd	+70 °C (+158 °F)
Exposition à la chaleur humide en continu	CEI 60068-2-3	Ca	10 jours ; 93 % HR ; 40 °C (104 °F)
Variation de température avec vitesse de variation spécifiée	CEI 60068-2-14	Nb	–25 °C à +70 °C (-13 °F à +158 °F)
Brouillard salin	CEI 60068-2-52	Kb/2	5°C/min
		C C	21 jours ; 75 % HR ; 25 °C (77 °F) ;
Influence de la corrosion/essai 2 gaz	CEI 60068-2-60	C	0,5 ppm H ₂ S; 1 ppm SO ₂
Influence de la corrosion/essai 4 gaz	CEI 60068-2-60		21 jours ; 75 % HR ; 25 °C (77 °F) ;
illiluelice de la corrosion/essai 4 gaz	CLI 00008-2-00		0,01 ppm H ₂ S; 0,2 ppm SO ₂ ;
			0,02 ppm NO ₂ ; ; 0,01 ppm Cl ₂
En stockage (3)			0,02 pp 1102, ; 0,0 : pp 0.2
Exposition au froid	CEI 60068-2-1	Ab	-25 °C (-13 °F)
Exposition à la chaleur sèche	CEI 60068-2-2	Bb	+70 °C (+158 °F)
Exposition à la chaleur seche Exposition à la chaleur humide en continu	CEI 60068-2-3	Са	56 jours ; 93 % HR ; 40 °C (104 °F)
•			
Sécurité	Norme	Niveau / Classe	Valeur
Essais de sécurité enveloppe			
Etanchéité face avant	CEI 60529	IP52	Autres faces fermées, sauf face
			arrière IP20
	NEMA	Type 12 avec joint intégré	
-	05100005 5 11	ou fourni selon le modèle	05000 (100005)
Tenue au feu	CEI 60695-2-11		650°C (1200°F) avec fil incandescen
Essais de sécurité électrique			
Onde de choc 1,2/50 µs	CEI 60255-5		5 kV ⁽¹⁾
Tenue diélectrique à fréquence industrielle	CEI 60255-5		2 kV 1 mn ⁽²⁾
Certification			
Œ	Norme harmonisée :	Directives européennes :	
**	CEI 60255-26	■ Directive européenne Cl	EM 2014/30/EU

- (1) Sauf communication: 3 kV en mode commun et 1kV en mode différentiel.
 (2) Sauf communication: 1 kVrms.
 (3) Sepam doit être stocké dans son conditionnement d'origine.

Informations spécifiques EDF

Remarques concernant la PWH

L'algorithme PWH Schneider n'a pas de "module d'inhibition" interne, donc de coefficient α . Il faut considérer $\alpha = 1$.

TMI (Temporisation Maintien Inhibition défaut aval)

La notion de TMI n'existe pas dans la PWH Schneider.

Il n'y a donc pas de réglage de ce paramètre.

Entrées / Sorties

PWH avec alimentation auxiliaire

	PWH avec alimentation auxiliaire									
Libellé des entrées	N° ETOR	E13	E14	E15	E16	E22	E23	E32	E33	
Disjoncteur ouvert	l11 ⁽¹⁾									
Disjoncteur fermé	I12 ⁽¹⁾									
Protection C13100										
Inhibition PWH (2)	I13 ⁽¹⁾									
Inhibition temporisation (3)	l14 ⁽¹⁾									
Sélectivité logique	I21 ⁽¹⁾									
Protection B61.41										
Mise en RSE	I22 (1)						-			
Défaillance télédécouplage	I23 ⁽¹⁾									
Inhibition protections	I24 ⁽¹⁾									
Position disj. de couplage	I25 ⁽¹⁾									
Consignation télédécouplage	I26 ⁽¹⁾									
Libellé des sorties	N° STOR									
Déclenchement	01	•	•	-	•	•	-	•	-	
Défaut équipement	04									
Protection C13100										
Instantané défaut aval (4)	O12 (1)									
Anomalie VR	O13 (1)									
Emission attente logique	O14 ⁽¹⁾									
Protection B61.41										
Déclenchement	O3									
Inhibition protections	O12 (1)						-			
Fichier de paramétrage		Préparam_avec_DSM.E13	Découplage.E14	Découplage.E15	Découplage.E16	Livraison et découplage. E22	Livraison et découplage. E23	Livraison et découplage. E32	Livraison et découplage. E33	
Signalisations	N° LED									
Protection opérationnelle	verte									
Défaut équipement	rouge		•							

- de base,
 □ selon paramétrage et options modules entrées/sorties MES114.
- (1) Nécessite l'utilisation du module d'entrées/sorties optionnelles MES114.
 (2) L'équation logique permettant d'inhiber la PWH est la suivante : inhibition PWH = [Entrée logique I13] OR [anomalie Vr].

- (3) Voir schéma de principe de la PWH page 3/5.
- (4) Voir schéma de principe de la PWH page 3/5 : instantané défaut aval = Bit dropout.

PWH sans alimentation auxiliaire

		Matériel
Entrées logiques	-	-
Sorties logiques	Sortie percuteur	Sortie CAT 648
	Défaut équipement	04
Signalisation en	PWH opérationnelle	led verte
face avant	Défaut équipement	led rouge

Logiciel de configuration SFT2848

Il est spécifique au Sepam série 48.

Pour mémoire :

- SFT2848 est le logiciel de configuration des Sepam série 48.
- SFT2841 est le logiciel de configuration des Sepam série 20, Sepam série 40, Easergy Sepam série 60 et Easergy Sepam série 80.

Périodicité de la maintenance de la protection

La politique de maintenance des Sepam prévoit son test fonctionnel complet tous les

- mise hors tension puis sous tension du produit
- vérifier le déclenchement puis le ré-enclenchement du Sepam (les essais de mise en service permettent de vérifier l'ensemble de la chaîne de déclenchement)
- réaliser d'autres tests fonctionnels mettant en jeu la mesure de courant et/ou de tension en fonction du type d'application.

Informations spécifiques EDF

Remarques concernant les entrées et sorties logiques

Contrôle de la durée de couplage

Cette fonction est activée lorsque les disjoncteurs C13.100 et B61.41 sont fermés ensemble pendant une durée T (par défaut 10 s) si l'inhibition des protections B61.41 n'est pas active.

Dans ce cas:

- affichage message "couplage trop long"
- active sortie "déclenchement organe de découplage"
- activation led "Trip" et "déclenchement B61.41".

Libellé des entrées	N° ETOR	Logique inversé	E14	E15	E16	E22	E23	E32	E33
Inhibition protection	124		•		•	•	•	•	-
Types: H.1 à H.5 et F.1 à F.5	5								

L'activation de l'entrée "**Inhibition protection**" se fait par la présence d'une polarité sur l'entrée l24. Elle entraîne, via les équations logiques :

- l'inhibition des exemplaires des protections 27, 59, 81H, 81F et 59N (exemplaire 1 uniquement)
- l'inhibition de la fonction "contrôle de la durée de couplage"
- l'affichage du message "Inhibition B61.41"
- l'activation de la led "Inhib B61"
- l'activation de la STOR O12.

Libellé des entrées	N° ETOR	Logique inversé	E14	E15	E16	E22	E23	E32	E33
Mise en RSE Types : H.2, H.3 et H.5	122	•							

L'activation de l'entrée "Mise en RSE" se fait par l'absence d'une polarité sur l'entrée l22. Quand cette entrée est utilisée, sa logique de prise en compte doit être inversée en cliquant sur la case "inversion" de l'écran "logique de commande" du logiciel de paramétrage SFT2848. L'entrée "Mise en RSE" entraîne, via les équations logiques :

- l'inhibition des temporisations de tous les exemplaires des protections 27, 59, 81H, 81F et 59N (exemplaire 1 uniquement)
- l'affichage du message "RSE en cours"
- l'activation de la led "RSE"

Libellé des entrées	N° ETOR	Logique inversé	E14	E15	E16	E22	E23	E32	E33
Défaillance Télédécouplage Type H.4	123	•				-			

L'activation de l'entrée "**Défaillance Télédécouplage**" se fait par l'absence d'une polarité sur l'entrée l23. Quand cette entrée est utilisée, sa logique de prise en compte doit être inversée en cliquant sur la case "inversion" de l'écran "logique de commande" du logiciel de paramétrage **SFT2848**.

L'entrée "Défaillance Télédécouplage" entraîne, via les équations logiques :

- l'inhibition des temporisations de tous les exemplaires des protections 27, 59, 81H, 81F et 59N (exemplaire 1 uniquement)
- l'affichage du message "Défaillance Télédécouplage"
- l'activation de la led "Def Télé".

Libellé des entrées	N° ETOR	Logique inversé	E14	E15	E16	E22	E23	E32	E33
Consignation Télédécouplage Type H.4	I26								

L'activation de l'entrée "Consignation Télédécouplage" se fait par la présence d'une polarité sur l'entrée I26. Cette entrée est optionnelle. Elle permet de consigner l'information télédécouplage au niveau de la fonction OPG du Sepam série 48 pour la protection de type H.4.

1/7

SEPED303006FR Schneider Gelectric

Informations spécifiques EDF

Remarques sur la configuration de la protection

- Calibrage : aucun calibrage n'est à réaliser sur site. Le Sepam série 48 est étalonné en usine.
- Affichage des valeurs de seuil : les valeurs de seuil sont affichées en grandeur primaire. Elles dépendent des valeurs de transformation des TC et TP données par l'utilisateur.
- Conservation des paramètres de réglage en cas de coupure secteur : Les paramètres de réglages sont conservés en mémoire de type EEPROM. Aucune pile ou batterie n'est utilisée pour réaliser cette fonction.
- Fichiers de pré-paramétrage : pour chaque application, est fourni un fichier de préparamétrage (répertoire : CD Serie 48\Pré paramétrage\Fichiers) qui permet de configurer et de paramétrer le Sepam série 48 pour une utilisation nominale répondant au cahier des charges EDF. Un fichier de documentation du paramétrage associé au fichier de pré-paramétrage (répertoire :
- CD Serie 48\Pré paramétrage\Documentation) permet de décrire les entrées / sorties utilisées, les réglages des protections et la signalisation en face avant.

Sommaire

•	
4	

2/1

Paramètre Généraux	2/2
Caractéristiques	2/3
Valeur moyenne et maximètres de courants phases	2/4
Tension composée Tension simple	2/5
Tension résiduelle Tension directe	2/6
Tension inverse Fréquence	2/7
Puissance active résiduelle	2/8
Puissances active, réactive et apparente	2/9
Maximètres de puissance active et réactive Facteur de puissance (cos φ)	
Facteur de puiss. résiduelle (cos φρ)	2/10
Energie active et réactive	2/11
Contexte de déclenchement Courant de déclenchement	2/12
Courant phase Courant résiduel	2/13
Taux de déséquilibre	2/1 4
Déphasage φ0 Déphasage φ1, φ2, φ3	2/15
Oscilloperturbographie	2/16
Cumul des ampères coupés et nombre de manœuvres	2/17
Temps de manœuvre Temps de réarmement	2/18
Surveillance TP	2/19
Surveillance TC	2/21

Les paramètres généraux définissent les caractéristiques des capteurs de mesure raccordés à Sepam et déterminent les performances des fonctions de mesure et de protection utilisées. Ils sont accessibles à l'aide du logiciel de paramétrage et d'exploitation SFT2848.

Paramètres généraux		Sélection	Plage de réglage
In	Courant phase nominal	2 ou 3 TC 1 A / 5 A	1 A à 6250 A
	(courant primaire capteur)	3 capteurs LPCT	25 A à 3150 A ⁽¹⁾
lb	Courant de base, correspond à la puissance nominale de l'équipement (2)		0,2 ln à 1,3 ln
In0	Courant résiduel nominal	Somme des 3 courants phase	Cf. In courant phase nominal
		Tore CSH120 ou CSH200	Calibre 2 A, 5 A ou 20 A
		TC 1 A/5 A	1 A à 6250 A (In0 = In)
		TC 1 A/5 A Sensibilité x 10	0,1 A à 625 A (In0 = In/10)
		Tore homopolaire + ACE990 (le rapport du tore 1/n doit être tel que 50 ≤ n ≤ 1500)	Selon courant à surveiller et utilisation de ACE990
Unp	Tension composée nominale primaire (Vnp : tension simple nominale primaire Vnp = Unp/√3)		220 V à 250 kV
Uns	Tension composée nominale secondaire	3 TP : V1, V2, V3	90 V à 230 V par pas de 1 V
		2 TP : U21, U32	90 V à 120 V par pas de 1 V
		1 TP : U21	90 V à 120 V par pas de 1 V
Uns0	Tension homopolaire secondaire pour une tension homopolaire primaire $Unp/\sqrt{3}$		Uns/3 ou Uns/√3
	Fréquence nominale		50 Hz ou 60 Hz
	Période d'intégration (pour courant moyen et maximètre courant et puissance)		5, 10, 15, 30, 60 mn
	Comptage d'énergie par impulsion	Incrément énergie active	0,1 kW.h à 5 MW.h
		Incrément énergie réactive	0,1 kvar.h à 5 Mvar.h
	·	-	-

⁽¹⁾ Valeurs de In pour LPCT, en A: 25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000, 3150.

⁽²⁾ Même si la valeur est comprise dans la plage, elle doit être arrondie selon le pas de réglage de 1 ou 10A (exemple : Ib = 12,2 A→ 13A

Fonctions		Plage de mesure	Précision (1)	MSA141	Sauvegarde
Mesures		' '	•	· ·	•
Courant phase		0,1 à 40 ln ⁽³⁾	±0,5 %	■	
Courant résiduel	Calculé	0,1 à 40 ln	±1 %	•	
	Mesuré	0,1 à 20 In0	±1 %	•	
Courant moyen		0,1 à 40 In	±0,5 %		
Maximètre de courant		0,1 à 40 In	±0,5 %		
Tension composée		0,06 à 1,2 Unp	±0,5 %	•	
Tension simple		0,06 à 1,2 Vnp	±0,5 %	•	
Tension résiduelle		0,04 à 3 Vnp	±1 %		
Tension directe		0,05 à 1,2 Vnp	±2 %		
Tension inverse		0,05 à 1,2 Vnp	±2 %		
Fréquence		25 à 65 Hz	±0,02 Hz		
Puissance active		0,015 Sn ⁽²⁾ à 999 MW	±1 %	•	
Puissance réactive		0,015 Sn ⁽²⁾ à 999 Mvar	±1 %	•	
Puissance apparente		0,015 Sn ⁽²⁾ à 999 MVA	±1 %	•	
Maximètre de puissance active		0,015 Sn ⁽²⁾ à 999 MW	±1 %		
Maximètre de puissance réactive		0,015 Sn ⁽²⁾ à 999 Mvar	±1 %		
Facteur de puissance		-1 à +1 (CAP/IND)	±1 %		
Energie active calculée		0 à 2,1.10 ⁸ MW.h	±1 % ±1 digit		
Energie réactive calculée		0 à 2,1.108 Mvar.h	±1 % ±1 digit		
Aide au diagnostic réseau		•	•	•	•
Contexte de déclenchement					
Courant de déclenchement phase		0,1 à 40 In	±5 %		
Courant de déclenchement terre		0,1 à 20 In0	±5 %		
Taux de déséquilibre / courant inverse		10 à 500 % de lb	±2 %		
Déphasage φ0 (entre V0 et I0)		0 à 359°	±2°		
Déphasage φ1, φ2, φ3 (entre V et I)		0 à 359°	±2°		
Enregistrements d'oscilloperturbographie					
Aide au diagnostic appareillage		•	•	•	•
Ampères coupés cumulés		0 à 65535 kA ²	±10 %		
Nombre de manœuvres		0 à 4.10 ⁹	1		
Temps de manœuvre		20 à 100 ms	±1 ms		
Temps de réarmement		1 à 20 s	±0.5 s		

disponible sur module sortie analogique MSA141, suivant paramétrage

□ sauvegardé sur coupure de l'alimentation auxiliaire.

(1) Précisions typiques, voir détails pages suivantes.

(2) Sn : puissance apparente = √3. Unp.In.

(3) Mesure indicative jusqu'à 0,02.In.

Courant phase Courant résiduel

Courant phase

Fonctionnement

Cette fonction fournit la valeur efficace des courants phases :

- I1 : courant phase 1 ■ I2 : courant phase 2
- I3 : courant phase 3.

Elle est basée sur la mesure du courant RMS et prend en compte les harmoniques jusqu'au rang 17.

Lecture

Ces mesures sont accessibles :

- à l'afficheur sur IHM avancée à l'aide de la touche
- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication
- par convertisseur analogique avec l'option MSA141.

Caractéristiques

-	
Plage de mesure	0,1 à 1,5 ln ⁽¹⁾
Unité	A ou kA
Précision	±0,5 % typique ⁽²⁾ ±2 % de 0,3 à 1,5 ln ±5 % si < 0,3 ln
Format afficheur (3)	3 chiffres significatifs
Résolution	0,1 A
Période de rafraîchissement	1 seconde (typique)

⁽¹⁾ In calibre nominal défini lors du réglage des paramètres généraux. (2) A In, dans les conditions de référence (CEI 60255-6).

Courant résiduel

Fonctionnement

Cette fonction fournit la valeur efficace du courant résiduel 10. Elle est basée sur la mesure du fondamental.

Lecture

Le courant résiduel mesuré (I0), et celui calculé par la somme des courants phases $(lo\Sigma)$ sont disponibles :

■ à l'afficheur sur IHM avancée à l'aide de la touche

- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication
- par convertisseur analogique avec l'option MSA141.

Plage de mesure		
Raccordement sur 3 TC phases :		0,1 à 1,5 ln0 ⁽¹⁾
Raccordement sur 1 TC avec tore adaptateur CSH30		0,1 à 1,5 ln0 ^{(1) (3)}
Raccordement sur tore homopolaire avec ACE990		0,1 à 1,5 ln0 ⁽¹⁾
Raccordement sur tore CSH Calibre 2 A		0,2 à 3 A ⁽³⁾
	Calibre 5 A	0,5 à 7,5 A ⁽³⁾
	Calibre 20 A	2 à 30 A ⁽³⁾
Unité		A ou kA
Précision (2)		±1 % typique à In0
		±2 % de 0,3 à 1,5 ln0
		±5 % si < 0,3 In0
Format afficheur		3 chiffres significatifs
Résolution		0,1 A
Période de rafraîchissement		1 seconde (typique)

- (1) In0 calibre nominal défini lors du réglage des paramètres généraux.
 (2) Dans les conditions de référence (CEI 60255-6), hors précision des capteurs.
 (3) In0 = InTC ou In0 = InTC/10 suivant paramétrage.

⁽³⁾ Plage d'affichage des valeurs : 0,02 à 40 In.

Valeur moyenne et maximètres de courants phases

Fonctionnement

Cette fonction fournit:

- la valeur moyenne du courant efficace de chaque phase obtenue sur chaque période d'intégration
- la plus grande des valeurs moyennes du courant efficace de chaque phase obtenue depuis la dernière remise à zéro.

Ces valeurs sont rafraîchies à l'issue de chaque "période d'intégration", période réglable de 5 à 60 mn et sont sauvegardées en cas de coupure d'alimentation.

Lecture

Ces mesures sont accessibles :

- à l'afficheur sur IHM avancée à l'aide de la touche
- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication.

Remise à zéro :

- par la touche clear de l'afficheur sur IHM avancée si un maximètre est affiché
- par la commande **clear** du logiciel SFT2848
- par la communication (TC6).

•		
Plage de mesure	0,1 à 1,5 ln ⁽¹⁾	
Unité	A ou kA	
Précision	±0,5 % typique ⁽²⁾ ±2 % de 0,3 à 1,5 ln ±5 % si < 0,3 ln	
Format afficheur	3 chiffres significatifs	
Résolution	0,1 A	
Période d'intégration	5, 10, 15, 30, 60 mn	

⁽¹⁾ In calibre nominal défini lors du réglage des paramètres généraux.

⁽²⁾ A In dans les conditions de référence (CEI 60255-6).

Tension composée **Tension simple**

Tension composée

Fonctionnement

Cette fonction fournit la valeur efficace de la composante 50 ou 60 Hz des tensions composées (selon raccordement des capteurs de tension) :

- U21 tension entre phases 2 et 1
- U32 tension entre phases 3 et 2
- U13 tension entre phases 1 et 3.

Elle est basée sur la mesure du fondamental.

Lecture

Ces mesures sont accessibles :

- à l'afficheur sur IHM avancée à l'aide de la touche
- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication
- par convertisseur analogique avec l'option MSA141.

Caractéristiques

•		
Plage de mesure	0,05 à 1,2 Unp ⁽¹⁾	
Unité	V ou kV	
Précision	±0,5 % typique ⁽²⁾ ±1 % de 0,5 à 1,2 Unp ±2 % de 0,05 à 0,5 Unp	
Format afficheur	3 chiffres significatifs	
Résolution	1 V	
Période de rafraîchissement	1 seconde (typique)	

⁽¹⁾ Un calibre nominal, défini lors du réglage des paramètres généraux. (2) A Unp dans les conditions de référence (CEI 60255-6).

Tension simple

Fonctionnement

Cette fonction fournit la valeur efficace de la composante 50 ou 60 Hz des tensions

- V1 tension simple de la phase 1
- V2 tension simple de la phase 2
- V3 tension simple de la phase 3.

Elle est basée sur la mesure du fondamental.

Lecture

Ces mesures sont accessibles :

a l'afficheur sur IHM avancée à l'aide de la touche

- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication
- par convertisseur analogique avec l'option MSA141.

Caractéristiques

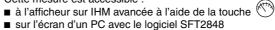
Plage de mesure	0,05 à 1,2 Vnp ⁽¹⁾	
Unité	V ou kV	
Précision	±0,5 % typique ⁽²⁾ ±1 % de 0,5 à 1,2 Vnp ±2 % de 0,05 à 0,5 Vnp	
Format afficheur	3 chiffres significatifs	
Résolution	1 V	
Période de rafraîchissement	1 seconde (typique)	

(1) Vnp: tension simple nominale primaire (Vnp = Unp/ $\sqrt{3}$). (2) A Vnp dans les conditions de référence (CEI 60255-6).

Tension résiduelle **Tension directe**

Tension résiduelle

Fonctionnement


Cette fonction fournit la valeur de la tension résiduelle V0 = (V1 + V2 + V3). V0 est mesurée :

- par somme interne des 3 tensions phases
- par TP étoile / triangle ouvert.

Elle est basée sur la mesure du fondamental.

Lecture

Cette mesure est accessible :

■ par la communication.

Caractéristiques

Plage de mesure	0,015 Vnp à 3 Vnp ⁽¹⁾	
Unité	V ou kV	
Précision	±1 % de 0,5 à 3 Vnp ±2 % de 0,05 à 0,5 Vnp ±5 % de 0,015 à 0,05 Vnp	
Format afficheur	3 chiffres significatifs	
Résolution	1 V	
Période de rafraîchissement	1 seconde (typique)	

(1) Vnp: tension simple nominale primaire (Vnp = $Unp/\sqrt{3}$).

Tension directe

Fonctionnement

Cette fonction fournit la valeur de la tension directe calculée Vd.

Lecture

Cette mesure est accessible :

■ à l'afficheur sur IHM avancée à l'aide de la touche

- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication.

Caractéristiques

Plage de mesure	0,05 à 1,2 Vnp ⁽¹⁾
Unité	V ou kV
Précision	±2 % à Vnp
Format afficheur	3 chiffres significatifs
Résolution	1 V
Période de rafraîchissement	1 seconde (typique)

(1) Vnp: tension simple nominale primaire (Vnp = Unp/ $\sqrt{3}$).

Tension inverse Fréquence

Tension inverse

Fonctionnement

Cette fonction fournit la valeur de la tension inverse calculée Vi.

Lecture

Cette mesure est accessible :

- à l'afficheur sur IHM avancée à l'aide de la touche
- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication.

Caractéristiques

Plage de mesure	0,05 à 1,2 Vnp ⁽¹⁾
Unité	V ou kV
Précision	±2 % à Vnp
Format afficheur	3 chiffres significatifs
Résolution	1 V
Période de rafraîchissement	1 seconde (typique)

(1) Vnp: tension simple nominale primaire (Vnp = Unp/ $\sqrt{3}$).

Fréquence

Fonctionnement

Cette fonction fournit la valeur de la fréquence.

La mesure de fréquence est effectuée :

- soit à partir de U21 si une seule tension composée est câblée sur le Sepam
- soit à partir de la tension directe si le Sepam dispose des mesures de U21 et U32. La fréquence n'est pas mesurée si :
- la tension U21 ou la tension directe Vd est inférieure à 40 % de Un
- la fréquence est hors de la plage de mesure.

Lecture

Cette mesure est accessible :

■ à l'afficheur sur IHM avancée à l'aide de la touche

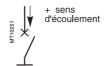
- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication
- par convertisseur analogique avec l'option MSA141.

Caractéristiques

Fréquence nominale	50 Hz, 60 Hz
Plage	25 à 65 Hz
Précision (1)	±0,02 Hz
Format afficheur	3 chiffres significatifs
Résolution	0,01 Hz ⁽²⁾
Période de rafraîchissement	1 seconde (typique)

(1) A Unp, dans les conditions de référence (CEI 60255-6). (2) Sur SFT2848. SEPED303006FR

Fonctionnement


Cette fonction fournit la valeur de puissance active résiduelle : Pr = $\sqrt{3}$.U0.I0 cos φ_r .

Par convention, on considère que :

- pour le circuit départ (1) :
- □ une puissance exportée par le jeu de barres est positive
- □ une puissance fournie au jeu de barres est négative.

- pour le circuit arrivée (1):
- $\hfill \square$ une puissance fournie au jeu de barres est positive
- □ une puissance exportée par le jeu de barres est négative.

Lecture

Ces mesures sont accessibles :

- à l'afficheur sur IHM avancée à l'aide de la touche ■ sur l'écran d'un PC avec le logiciel SFT2848
- par la communication
- par convertisseur analogique avec l'option MSA141.
- (1) Choix à régler dans les paramètres généraux.

Caractéristiques

	Puissance active résiduelle
Plage de mesure	±(1,5 % Sn à 999 MW) ⁽¹⁾
Unité	kW, MW
Précision	±1 % typique ⁽²⁾
Format afficheur	3 chiffres significatifs
Résolution	0,1 kW
Période de rafraîchissement	1 seconde (typique)

(1) $Sn = \sqrt{3} Unp.In.$

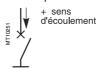
(2) A In, Unp, cos φ > 0,8 dans les conditions de référence (CEI 60255-6).

Puissances active, réactive et apparente

Fonctionnement

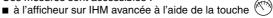
Cette fonction fournit les valeurs de puissance :

- P puissance active = $\sqrt{3}$.U.I cos φ
- Q puissance réactive = $\sqrt{3}$.U.I.sin φ
- S puissance apparente = $\sqrt{3}$.U.I.


Cette fonction mesure les puissances active et réactive montage triphasé 3 fils par la méthode dite des deux wattmètres. Les puissances sont obtenues à partir des informations tensions composées U21 et U32 et des courants phases I1 et I3. Dans le cas où seule la tension U21 est raccordée, P et Q sont calculées en considérant que le réseau est équilibré en tension.

Par convention, on considère que :

- pour le circuit départ (1) :
- □ une puissance exportée par le jeu de barres est positive
- □ une puissance fournie au jeu de barres est négative.



- pour le circuit arrivée (1):
- □ une puissance fournie au jeu de barres est positive
- □ une puissance exportée par le jeu de barres est négative.

Lecture

Ces mesures sont accessibles :

- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication
- par convertisseur analogique avec l'option MSA141.

(1) Choix à régler dans les paramètres généraux.

Caractéristiques

	Puissance active P	Puissance réactive Q
Plage de mesure	±(1,5 % Sn à 999 MW) ⁽¹⁾	±(1,5 % Sn à 999 Mvar) ⁽¹⁾
Unité	kW, MW	kvar, Mvar
Précision	±1 % typique (2)	±1 % typique (2)
Format afficheur	3 chiffres significatifs	3 chiffres significatifs
Résolution	0,1 kW	0,1 kvar
Période de rafraîchissement	1 seconde (typique)	1 seconde (typique)

	Puissance apparente S
Plage de mesure	1,5 % Sn à 999 MVA ⁽¹⁾
Unité	kVA, MVA
Précision	±1 % typique ⁽²⁾
Format afficheur	3 chiffres significatifs
Résolution	0,1 kVA
Période de rafraîchissement	1 seconde (typique)

(1) $Sn = \sqrt{3} Unp.ln.$

(2) A In, Unp, cos φ > 0,8 dans les conditions de référence (CEI 60255-6).

Maximètres de puissance active et réactive Facteur de puissance (cos φ) Facteur de puiss. résiduelle (cos φr)

Maximètres de puissance active et réactive

Fonctionnement

Cette fonction fournit la plus grande valeur moyenne de la puissance active ou réactive depuis la dernière remise à zéro.

Ces valeurs sont rafraîchies à l'issue de chaque "période d'intégration" période réglable de 5 à 60 mn (période commune avec les maximètres de courant phase). Ces valeurs sont sauvegardées en cas de coupure d'alimentation.

Lecture

Ces mesures sont accessibles :

- à l'afficheur sur IHM avancée à l'aide de la touche
- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication.

Remise à zéro

- par la touche clear de l'afficheur sur IHM avancée si un maximètre est affiché
- par la commande clear du logiciel SFT2848
- par la communication (TC6).

Caractéristiques

	Puissance active	Puissance réactive
Plage de mesure	±(1,5 % Sn à 999 MW) ⁽¹⁾	±(1,5 % Sn à 999 Mvar) ⁽¹⁾
Unité	kW, MW	kvar, Mvar
Précision	±1 %, typique ⁽²⁾	±1 % typique (2)
Format afficheur	3 chiffres significatifs	3 chiffres significatifs
Résolution	0,1 kW	0,1 kvar
Période d'intégration	5, 10, 15, 30, 60 mn	5, 10, 15, 30, 60 mn
(4) Co. (0) loss los		

(2) A In, Unp, cos φ > 0,8 dans les conditions de référence (CEI 60255-6).

Facteur de puissance (cos φ) Facteur de puissance résiduelle (cos or)

Fonctionnement

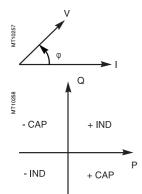
Le facteur de puissance est défini par :

$$\cos \varphi = P/\sqrt{P^2 + Q^2}$$

Il exprime le déphasage entre les courants phases et les tensions simples.

Les signes + et - ainsi que les indications IND (inductif) et CAP (capacitif) indiquent le sens d'écoulement de l'énergie ainsi que la nature des charges.

Lecture


Ces mesures sont accessibles :

- à l'afficheur sur IHM avancée à l'aide de la touche
- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication.

Caractéristiques

Plage de mesure	-1 à 1 IND/CAP
Précision (1)	±0,01 typique
Format afficheur	3 chiffres significatifs
Résolution	0,01
Période de rafraîchissement	1 seconde (typique)

(1) A In, Unp, cos φ > 0,8 dans les conditions de référence (CEI 60255-6).

Energie active et réactive calculée

Fonctionnement

Cette fonction fournit pour les valeurs d'énergie active et réactive :

- un compteur pour l'énergie qui transite dans un sens
- un compteur pour l'énergie qui transite dans l'autre sens.

Elle est basée sur la mesure du fondamental.

Ces compteurs sont sauvegardés sur coupure de l'alimentation.

Lecture

Ces mesures sont accessibles :

- à l'afficheur sur IHM avancée à l'aide de la touche
- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication.

Caractéristiques

	Energie active	Energie réactive
Capacité de comptage	0 à 2,1 10 ⁸ MW.h	0 à 2,1 108 Mvar.h
Unité	MW.h	Mvar.h
Précision	±1 % typique (1)	±1 % typique (1)
Format afficheur	10 chiffres significatifs	10 chiffres significatifs
Résolution	0,1 MW.h	0,1 Mvar.h

(1) A In, Unp, cos φ > 0,8 dans les conditions de référence (CEI 60255-6).

Energie active et réactive par comptage d'impulsion

Fonctionnement

Cette fonction permet le comptage de l'énergie au moyen d'entrées logiques. Un incrément d'énergie est associé à chaque entrée (à régler dans les paramètres généraux). A chaque impulsion d'entrée l'incrément est ajouté au compteur.

- 4 entrées et 4 compteurs sont disponibles :
- énergie active positive et négative
- énergie réactive positive et négative.

Ces compteurs sont sauvegardés sur coupure de l'alimentation.

Lecture

- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication.

	Energie active	Energie réactive
Capacité de comptage	0 à 2,1 10 ⁸ MW.h	0 à 2,1 10 ⁸ Mvar.h
Unité	MW.h	Mvar.h
Format afficheur	10 chiffres significatifs	10 chiffres significatifs
Résolution	0,1 MW.h	0,1 Mvar.h
Incrément	0,1 kW.h à 5 MW	0,1 kvar.h à 5 Mvar.h
Impulsion	15 ms min.	15 ms min.

TRIPI1

30 ms

Acquisition du courant de déclenchement TRIPI1.

ordre de

déclenchement

2/13

Contexte de déclenchement Courant de déclenchement

Contexte de déclenchement

Fonctionnement

Cette fonction fournit les valeurs des grandeurs physiques à l'instant du déclenchement pour permettre une analyse de la cause du défaut. Valeurs disponibles sur l'IHM avancée :

- courants de déclenchement
- courants résiduels (sur somme des courants phases et mesurée sur l'entrée I0)
- tensions composées
- tension résiduelle
- fréquence
- puissance active
- puissance réactive.

L'IHM expert permet d'obtenir en plus des valeurs disponibles sur l'IHM avancée :

- tensions simples
- tension inverse
- tension directe.

Les valeurs correspondant aux cinq derniers déclenchements sont mémorisées avec la date et l'heure du déclenchement. Elles sont sauvegardées en cas de coupure d'alimentation.

Lecture

Ces mesures sont accessibles dans les contextes de déclenchement :

- à l'afficheur sur IHM avancée à l'aide de la touche (2)
- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication.

Courant de déclenchement

Fonctionnement

Cette fonction fournit la valeur efficace des courants à l'instant présumé du dernier déclenchement :

- TRIPI1 : courant phase 1
- TRIPI2 : courant phase 2
- TRIPI3 : courant phase 3.

Elle est basée sur la mesure du fondamental.

Cette mesure est définie comme la valeur efficace maximale mesurée pendant un intervalle de 30 ms après activation du contact de déclenchement sur la sortie O1.

Ces mesures sont accessibles dans les contextes de déclenchement :

- à l'afficheur sur IHM avancée à l'aide de la touche (∑)
- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication.

Caractéristiques

•	
Plage de mesure	0,1 à 40 ln ⁽¹⁾
Unité	A ou kA
Précision	±5 % ±1 digit
Format afficheur	3 chiffres significatifs
Résolution	0,1 A

(1) In, calibre nominal défini lors du réglage des paramètres généraux.

Taux de déséquilibre

Fonctionnement

Cette fonction fournit le taux de composante inverse : T = Ii/Ib.

Le courant inverse est déterminé à partir des courants des phases :

3 phases

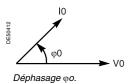
$$\vec{l}i = \frac{1}{3} \times (\vec{l}1 + a^2\vec{l}2 + a\vec{l}3)$$

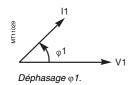
avec
$$\mathbf{a} = \mathbf{e}^{\mathbf{j}\frac{2\pi}{3}}$$

■ 2 phases

$$ii = \frac{1}{\sqrt{3}} \times (i1 - a^2 i3)$$

avec
$$\mathbf{a} = \mathbf{e}^{\mathbf{j}\frac{2\tau}{3}}$$


Ces 2 formules sont équivalentes en l'absence de défaut homopolaire.


Lecture

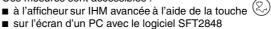
Ces mesures sont accessibles :

- à l'afficheur sur IHM avancée à l'aide de la touche
- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication.

Plage de mesure	10 à 500 %
Unité	% lb
Précision	±2 %
Format afficheur	3 chiffres significatifs
Résolution	1 %
Période de rafraîchissement	1 seconde (typique)

Déphasage φ0

Fonctionnement


Cette fonction fournit le déphasage mesuré entre la tension résiduelle et le courant résiduel dans le sens trigonométrique (voir le schéma). Cette mesure est utile, lors de la mise en service, pour vérifier que la protection directionnelle de terre est correctement câblée.

Deux valeurs sont disponibles :

- φ0, angle avec I0 mesuré
- \blacksquare ϕ 0 Σ , angle avec I0 calculé sur somme des courants phase.

Lecture

Ces mesures sont accessibles :

■ par la communication.

Caractéristiques

Plage de mesure	0 à 359°
Résolution	1°
Précision	±2°
Période de rafraîchissement	2 secondes (typique)

Déphasage φ1, φ2, φ3

Fonctionnement

Cette fonction fournit le déphasage entre respectivement la tension V1, V2, V3 et le courant I1, I2, I3 dans le sens trigonométrique (voir schéma). Ces mesures sont utiles lors de la mise en service du Sepam pour vérifier le câblage correct des entrées tension et courant. Elle ne fonctionne pas quand seule la tension U21 est raccordée au Sepam.

Lecture

Ces mesures sont accessibles :

■ à l'afficheur sur IHM avancée à l'aide de la touche

- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication.

0 à 359°
1°
±2°
2 secondes (typique)

Fonctionnement

Cette fonction permet l'enregistrement de signaux analogiques et d'états logiques. La mémorisation de l'enregistrement est provoquée selon paramétrage par un événement déclenchant.

L'enregistrement mémorisé commence avant l'événement déclenchant et se poursuit après.

L'enregistrement est constitué des informations suivantes :

- les valeurs échantillonnées sur les différents signaux
- la date
- les caractéristiques des voies enregistrées.

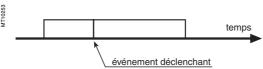
La durée et le nombre d'enregistrement sont paramétrables avec le logiciel SFT2848.

Les fichiers sont enregistrés dans une mémoire à décalage FIFO (First In First Out) : quand le nombre maximum d'enregistrements est atteint, l'enregistrement le plus ancien est effacé quand un nouvel enregistrement est déclenché.

Les enregistrements d'oscilloperturbographie sont perdus lors d'une mise hors tension ou lors d'une modification des équations logiques ou des messages d'alarmes.

Transfert

Le transfert des fichiers peut se faire localement ou à distance :


- localement : au moyen d'un PC raccordé à la prise console et disposant du logiciel SFT2848
- à distance : au moyen d'un logiciel spécifique au système de supervision.

Restitution

La restitution des signaux à partir d'un enregistrement se fait au moyen du logiciel SFT2826.

Principe

enregistrement mémorisé

Contenu d'un enregistrement	Fichier de configuration : date, caractéristiques des voies, rapport de transformation de la chaîne de mesure Fichier des échantillons : 12 valeurs par période/signal enregistré ⁽³⁾
Signaux analogiques (2) enregistrés	4 voies courant (I1, I2, I3, I0) 3 voies tension (V1, V2, V3 ou U21, U32, V0)
Etats logiques enregistrés	10 entrées logiques, sorties logiques O1 à O4, pick-up, 1 information configurable par l'éditeur d'équations logiques
Nombre d'enregistrements mémorisés	1 à 19
Durée totale d'un enregistrement	1 s à 10 s La totalité des enregistrements plus un ne doit pas dépasser 20 s à 50 Hz et 16 s à 60 Hz. Exemples (à 50 Hz) : 1 enregistrement de 10 s 3 enregistrements de 5 s 19 enregistrements de 1 s
Périodes avant événement déclenchant (1)	0 à 99 périodes
Format des fichiers	COMTRADE 97

- (1) Selon paramétrage avec le logiciel SFT2848 et réglé à 36 périodes en usine.
- (2) Selon type et raccordement des capteurs.
- (3) Les échantillons sont enregistrés à la fréquence réelle du réseau, par contre les temps affichés correspondent à la fréquence nominale (50 ou 60 Hz).

appareillage

Cumul des ampères coupés et nombre de manœuvres

Cumul des ampères coupés

Fonctionnement

Cette fonction fournit, pour cinq plages de courant, le cumul de kilo-ampères coupés, exprimé en (kA)2.

Elle est basée sur la mesure du fondamental.

Les plages de courant affichées sont :

- 0 < I < 2 In
- 2 ln < l < 5 ln
- 5 ln < l < 10 ln
- 10 ln < l < 40 ln
- I > 40 In.

Cette fonction fournit également le total cumulé des kilo-ampères coupés, exprimé

Chaque valeur est sauvegardée sur coupure de l'alimentation auxiliaire.

Se référer à la documentation de l'appareil de coupure pour l'exploitation de ces informations.

Nombre de manœuvres

Cette fonction fournit le nombre total de manœuvres de l'appareil de coupure. Elle est activée par la commande de déclenchement (relais O1).

Le nombre de manœuvres est sauvegardé sur coupure de l'alimentation auxiliaire.

Lecture

Ces mesures sont accessibles :

- à l'afficheur sur IHM avancée à l'aide de la touche
- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication.

Des valeurs initiales peuvent être introduites à l'aide du logiciel SFT2848 pour tenir compte de l'état réel d'un appareil de coupure usagé.

Caractéristiques

Cumul des ampères coupés ((kA) ²	
Plage	0 à 65535 (kA) ²	
Unité	(kA) ² primaire	
Résolution	1(kA) ²	
Précision (1)	±10 % ±1 digit	
Nombre de manœuvres		
Plage	0 à 65535	

(1) A In, dans les conditions de référence (CEI 60255-6).

Temps de manœuvre Temps de réarmement

Temps de manœuvre

Fonctionnement

Cette fonction fournit la valeur du temps de manœuvre à l'ouverture d'un appareil de coupure (1) déterminée à partir de la commande d'ouverture (relais O1) et le changement d'état du contact de position appareil ouvert câblé sur l'entrée I11 (2). Cette fonction est inhibée lorsque l'entrée est paramétrée en tension alternative (3). Cette valeur est sauvegardée sur coupure de l'alimentation auxiliaire.

Lecture

Cette mesure est accessible :

- à l'afficheur sur IHM avancée à l'aide de la touche
- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication.
- (1) Se référer à la documentation de l'appareil de coupure pour l'exploitation de ces informations. (2) Module optionnel MES.
- (3) Modules optionnels MES114E ou MES114F.

Caractéristiques

-		
Plage de mesure	20 à 100	
Unité	ms	
Précision	±1 ms typique	
Format afficheur	3 chiffres significatifs	
Résolution	1 ms	

Temps de réarmement

Fonctionnement

Cette fonction fournit la valeur du temps de réarmement de la commande d'un appareil de coupure ⁽¹⁾ déterminée à partir du contact changement d'état de la position fermée de l'appareil et du contact fin d'armement câblés sur les entrées logiques ⁽²⁾ du Sepam.

Cette valeur est sauvegardée sur coupure de l'alimentation auxiliaire.

Lecture

Cette mesure est accessible :

- à l'afficheur sur IHM avancée à l'aide de la touche
- sur l'écran d'un PC avec le logiciel SFT2848
- par la communication.
- (1) Se référer à la documentation de l'appareil de coupure pour l'exploitation de ces informations.
 (2) Modules optionnels MES114, MES114E ou MES114F.

1 à 20	
S	
±0,5 s	
3 chiffres significatifs	
1 s	
	s ±0,5 s 3 chiffres significatifs

Fonctions de diagnostic appareillage

Surveillance TP Code ANSI 60FL

Fonctionnement

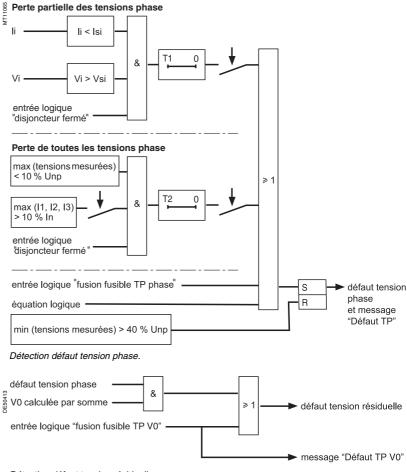
La fonction surveillance TP (Transformateur de Potentiel) permet de surveiller la chaîne complète de mesure des tensions phase et résiduelle :

- les transformateurs de potentiel
- le raccordement des TP au Sepam
- les entrées analogiques tension de Sepam.

Cette fonction traite les défaillances suivantes :

- perte partielle des tensions phase, détectée par :
- □ présence de tension inverse
- □ et absence de courant inverse
- perte de toutes les tensions phase, détectée par :
- □ présence de courant sur une des trois phases
- □ et absence de toutes les tensions mesurées
- déclenchement de la protection des TP phase (et/ou TP résiduel), détectée par acquisition sur une entrée logique du contact de fusion fusible ou du contact auxiliaire du disjoncteur assurant la protection des TP
- d'autres cas de défaillance peuvent être traités grâce à l'éditeur d'équations logiques.

Les informations "Défaut tension phase" et "Défaut tension résiduelle" disparaissent automatiquement lors du retour à la normale, c'est-à-dire dès que :


- la cause du défaut a disparu
- et toutes les tensions mesurées sont présentes.

Prise en compte de l'information disjoncteur fermé

L'information "disjoncteur fermé" est prise en compte pour détecter la perte d'une, deux ou trois tensions si elle est raccordée à une entrée logique. Si l'information "disjoncteur fermé" n'est pas raccordée à une entrée logique, la

Si l'information "disjoncteur ferme" n'est pas raccordee a une entree logique, la détection du défaut TP sur perte d'une, deux ou trois tensions n'est pas conditionné par la position du disjoncteur.

Schéma de principe

Détection défaut tension résiduelle.

Fonctions de diagnostic appareillage

Surveillance TP Code ANSI 60FL

Conseils de réglage

La perte partielle des tensions est basée sur la détection de présence de tension inverse et d'absence de courant inverse.

Par défaut

- la présence de tension inverse est détectée lorsque : Vi > 10 % Vnp (Vsi)
- l'absence de courant inverse est détectée lorsque : li < 5 % In (Isi)
- la temporisation T1 est de 1 s.

Ces réglages par défaut assurent la stabilité de la fonction surveillance TP en cas de court-circuit ou de phénomènes transitoires sur le réseau.

En cas de réseau fortement déséquilibré, le seuil lsi peut être augmenté.

La temporisation T2 de détection de la perte de toutes les tensions doit être plus longue que le temps d'élimination d'un court-circuit par une protection 50/51, pour éviter de détecter un défaut TP sur perte des tensions provoquée par un court-circuit triphasé.

Caracteristiques			
Validation détection de la perte	e partielle des tensions phase		
Réglage	Oui / non		
Seuil Vsi			
Réglage	2 % à 100 % de Vnp		
Précision	±2 % pour Vi ≥ 10 % Vnp		
	±5 % pour Vi < 10 % Vnp		
Résolution	1 %		
Pourcentage de dégagement	(95 ±2.5)% pour Vi ≥ 10 % Vnp		
Seuil Isi			
Réglage	5 % à 100 % de In		
Précision	±5 %		
Résolution	1 %		
Pourcentage de dégagement	(105 ±2.5)%		
Temporisation T1 (perte partie	lle des tensions phase)		
Réglage	0,1 s à 300 s		
Précision	±2 % ou ± 25 ms		
Résolution	10 ms		
Validation détection de la perte	e de toutes les tensions phase		
Réglage	Oui / non		
Détection de la perte de toutes	les tensions avec vérification présence courant		
Réglage	Oui / non		
Temporisation T2 (perte de tou	utes les tensions)		
Réglage	0,1 s à 300 s		
Précision	±2 % ou ± 25 ms		
Résolution	10 ms		
Comportement sur protections	s tension et puissance		
Réglage	Sans action / inhibition		

2/21

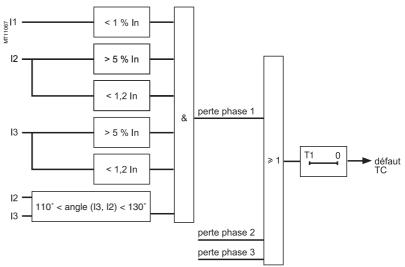
Fonctions de diagnostic appareillage

Fonctionnement

La fonction surveillance TC (Transformateur de Courant) permet de surveiller la chaîne complète de mesure des courants phase :

- les capteurs de courant phase (TC 1 A/5 A)
- le raccordement des capteurs de courant phase au Sepam
- les entrées analogiques courant phase de Sepam.

Cette fonction détecte la perte d'un courant phase, lorsque les trois courants phase sont mesurés.


Cette fonction est inactive si seulement 2 capteurs de courant phase sont raccordés.

L'information "Défaut TC" disparaît automatiquement lors du retour à la normale, c'est-à-dire dès que trois courants phase sont mesurés et sont de valeur supérieure à 10 % de In.

En cas de perte d'un courant phase, les fonctions de protection suivantes peuvent être inhibées afin d'éviter tout déclenchement intempestif :

■ 51N, si l0 est calculé par somme des courants phase.

Schéma de principe

Caractéristiques

•			
Temporisation			
Réglage	0,15 s à 300 s		
Précision	±2 % ou ±25 ms		
Résolution	10 ms		
Inhibition des protections 51N, 32P			
Réglage	Sans action / inhibition	Sans action / inhibition	

SEPED303006FR Schneider Electric

3/1

Gammes de réglages	3/2
Minimum de tension Code ANSI 27/27S	3/3
Maximum de puissance wattmétrique homopolaire (PWH) Code ANSI 32N	3/4
Maximum de puissance active directionnelle Code ANSI 32P	3/6
Maximum de courant phase Code ANSI 50/51	3/7
Maximum de courant terre Code ANSI 50N/51N	3/9
Maximum de tension Code ANSI 59	3/11
Maximum de tension résiduelle Code ANSI 59N	3/12
Maximum de fréquence Code ANSI 81H	3/13
Minimum de fréquence Code ANSI 81L	3/14
Généralités Courbes de déclenchement	3/15 3/15

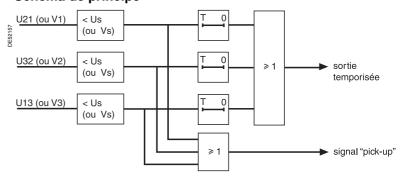
SEPED303006FR Schneider

Fonctions	Réglages		Temporisations
ANSI 27 - Minimum de tension c	omposée		
	5 à 100 % de Unp		0,05 s à 300 s
ANSI 27S - Minimum de tension	simple		
	5 à 100 % de Vnp		0,05 s à 300 s
ANSI 32N - Maximum de puissar	nce wattmétrique homopolaire (PWH)		
Courbe de déclenchement	Temporisation de déclenchement		
	Temps indépendant	DT	
	Temps mémoire (TMD)	100 ms ou 200 ms	
Seuil Sw	20, 40, 80, 120 kW primaire		
Angle caractéristique	Déclenchement certain	70,6°	
	Non déclenchement certain	78,4°	
ANSI 32P - Maximum de puissar	nce active directionnelle		
	1 à 120 % de Sn ⁽²⁾		0,1 s à 300 s
ANSI 50/51 - Maximum de coura	nt phase		
Courbe de déclenchement	Temporisation de déclenchement	Temporisation de maintien	
	Temps indépendant	DT	
	SIT, LTI, VIT, EIT, UIT (1)	DT	
	RI	DT	
	CEI: SIT/A, LTI/B, VIT/B, EIT/C	DT ou IDMT	
	IEEE: MI (D), VI (E), EI (F)	DT ou IDMT	
	IAC : I, VI, EI	DT ou IDMT	
Seuil Is	0,1 à 24 In	Temps indépendant	Inst ; 0,05 s à 300 s
	0.1 à 2.4 In	Temps dépendant	0,1 s à 12,5 s à 10 ls
Temps de maintien	Temps indépendant (DT ; timer hold)		Inst : 0.05 s à 300 s
	Temps dépendant (IDMT ; reset time)		0,5 s à 20 s
Confirmation	Sans		0,0 0 4 20 0
	Par maximum de tension inverse		
	Par minimum de tension composée		
ANSI 50N/51N - Maximum de co	•		
Courbe de déclenchement	Temporisation de déclenchement	Temporisation de maintien	
Course de déclaration en la constitue de declaration en la constitue de la constitue d	Temps indépendant	DT	
	SIT, LTI, VIT, EIT, UIT (1)	DT	
	RI	DT	
	CEI : SIT/A,LTI/B, VIT/B, EIT/C	DT ou IDMT	
	IEEE : MI (D), VI (E), EI (F)	DT ou IDMT	
	IAC : I, VI, EI	DT ou IDMT	
Seuil Is0	0,1 à 15 ln0	Temps indépendant	Inst ; 0,05 s à 300 s
	0,1 à 1 ln0	Temps dépendant	0,1 s à 12,5 s à 10 ls0
Temps de maintien	Temps indépendant (DT ; timer hold)	тотпро поротнати	Inst; 0,05 s à 300 s
remps de maintien	Temps dépendant (IDMT ; reset time)		0,5 s à 20 s
ANSI 59 - Maximum de tension	composée	simple	0,0 0 4 20 0
Artor of maximum de teneren	50 à 150 % de Unp	50 à 150 % de Vnp	0,05 s à 300 s
ANSI 59N - Maximum de tension	·	35 4 100 % do viip	0,00 0 4 000 0
ANOI 3314 MAXIMUM de tension	2 à 80 % de Unp		0,05 s à 300 s
ANSI 81H - Maximum de fréquer			
or orre maximum de nequer	50 à 55 Hz ou 60 à 65 Hz		0,1 s à 300 s
ANSI 81L - Minimum de fréquen			0,1 3 4 000 3
Altorote minimum de frequent	40 à 50 Hz ou 50 à 60 Hz		0,1 s à 300 s
Note : los paramètros gápárous la	Ib In0 Unn et Vnn sont décrits dans le chan	itra "Eanations do masura" on naga	

Nota : les paramètres généraux In, lb, In0, Unp et Vnp sont décrits dans le chapitre "Fonctions de mesure" en page 2/2 : Paramètres généraux.

⁽¹⁾ Déclenchement à partir de 1,2 ls.
(2) Sn = √3 .ln.Unp.

3/3


Minimum de tension Code ANSI 27/27S

Fonctionnement

Cette protection est triphasée et fonctionne suivant paramétrage en tension simple ou composée :

- elle est excitée si une des 3 tensions simples ou composées devient inférieure au seuil Us (ou Vs)
- elle comporté une temporisation T à temps indépendant (constant)
- en fonctionnement tension simple, elle indique la phase en défaut dans l'alarme associée au défaut.

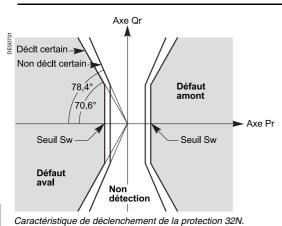
Schéma de principe

Nota : si la temporisation est réglée à T ms, alors la sortie temporisée est active T ms après la montée du signal "pick-up".

Caractéristiques

•	
Seuil Us (ou Vs)	
Réglage	5 % Unp (ou Vnp) à 100 % Unp (ou Vnp)
Précision (1)	±2 % ou 0,005 Vnp
Résolution	1 %
Pourcentage de dégagement	103 % ±2,5 %
Temporisation T	
Réglage	0 s à 300 s
Précision (1)	±2 %, ou ±25 ms
Résolution	10 ms ou 1 digit
Temps caractéristiques	
Temps de fonctionnement	pick-up < 120 ms
Temps de dépassement	< 35 ms
Temps de retour	< 40 ms

(1) Dans les conditions de référence (CEI 60255-6).


Conditions de rac	cordement				
Type de raccordement	V1, V2, V3	U21	U21, U32	U21 + V0	U21, U32 + V0
Fonctionnement en tension simple	Oui	Non	Non	Non	Oui
Fonctionnement en tension composée	Oui	sur U21 uniquement	Oui	sur U21 uniquement	Oui

Caractéristiques spécifiques EDF

Domaine limite de fonctionnement (à gamme de précision garantie)			
Les conditions de référence sont définies dans la norme CEI 60255-6. Les points suivants ont été spécifiquement qualifiés pour les besoins EDF.			
Variation de la fréquence du signal d'entrée	-20 Hz/s ≤ df/dt ≤ +20 Hz/s		
Variation du déphasage entre phases	-70° ≤ Δφ ≤ +70°		
Niveaux maximum harmoniques	Taux de réjection [Harmonique 3] > 15 Taux de réjection [Harmoniques >3] > 10		
Temps caractéristiques selon essais EDF			
T N F G (temps de non fonctionnement garanti)	60 ms		
T F G (temps de fonctionnement garanti)	100 ms		
T M M (temps de montée maximal)	123 ms		
T D G M (temps de dégagement maximal)	< 40 ms		

SEPED303006FR Schneider Schneider

Maximum de puissance wattmétrique homopolaire (PWH) Code ANSI 32N

Fonctionnement

A partir des informations :

 \blacksquare courant résiduel "Ir", courant mesuré par un tore homopolaire :

ir = i1 + i2 + i3

(mesuré à l'entrée I0 du relais).

tension résiduelle "Vr", somme vectorielle des tensions phase-terre : $\vec{V}r = \vec{V} \vec{1} + \vec{V} \vec{2} + \vec{V} \vec{3}$,

(somme calculée des trois entrées tensions simples du relais).

La protection PWH calcule les puissances résiduelles suivantes :

 \blacksquare puissance active résiduelle : $Pr = |Vr| \times |Ir| \times \cos \varphi$

lacktriangle puissance réactive résiduelle : $\mathbf{Qr} = |\mathbf{Vr}| \times |\mathbf{Ir}| \times \mathbf{sin} \phi$

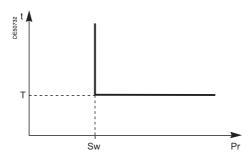
et positionne le point obtenu dans un plan d'abscisse Pr et d'ordonnée Qr.

Ce plan est partagé en 3 zones de fonctionnement : une zone non détection et 2 zones de détection de défauts : défaut aval et défaut amont :

- la zone "défaut aval" est destinée à émettre un ordre de déclenchement lors d'un défaut en aval de la protection
- la zone "défaut amont" est destinée à fournir une information en face avant (led) lors d'un défaut en amont de la protection. Cet affichage local permet de faciliter la mise en œuvre de la protection, lors des essais de mise en service.

Les angles qui définissent la zone de déclenchement du défaut aval correspondent aux équations suivantes :

Zone de déclenchement certain : $\frac{Qr}{Pr} < \sqrt{8}$ (soit un angle de 70,6°)

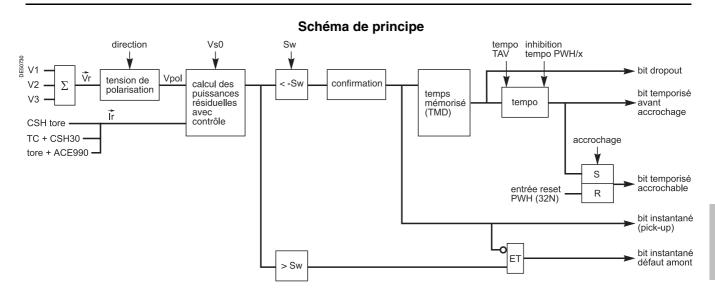

Zone de non déclenchement certain : $\frac{Qr}{Pr} > \sqrt{24}$ (soit un angle de 78,4°).

L'ajout d'une temporisation de maintien (TMD) permet de détecter les défauts récurrents.

La direction de déclenchement peut être paramétrée côté barre ou côté ligne, pour s'affranchir d'une erreur de câblage des secondaires des capteurs TC et TP.

Protection à temps indépendant

Sw correspond au seuil de fonctionnement exprimé en watts (Puissance Primaire), et T correspond au retard de fonctionnement de la protection.



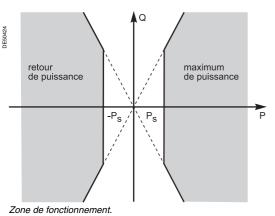
La protection PWH est inhibée si la tension Vr est inférieur au seuil Vs0.

Remarque: La portection 59N (maximum de tension résiduelle) surveille la tension Vr par rapport au seuil d'anomalie Vr (voir documentation liée à cette protection).

3/5

Maximum de puissance wattmétrique homopolaire (PWH) Code ANSI 32N

Caractéristiques


Angle caractéristiques	
Angle de déclenchement certain	70,6°
Angle de non déclenchement certain	78,4°
Direction de déclenchement	
Réglage	Ligne / barres
Seuil Sw	
Réglage	20, 40, 80, 120 exprimé en kW primaire (1)
Précision	±5 %
Pourcentage de dégagement	90 % ±3 %
Seuil Vso	
Réglage	1 % Unp à 80 % Unp
Résolution	1 %
Précision	±5 %
Temporisation TV	
Réglage	inst, 0,05 s ≤ T ≤ 300 s
Résolution	10 ms ou 1 digit
Précision	≤ 2 % ou -10 ms à +25 ms
Temps mémoire Tomem	
Réglage	100 ms, 200 ms
Précision	≤ 2 % ou -10 ms à +25 ms
Temps caractéristiques	
Temps de fonctionnement	pick-up < 35 ms
Temps de dépassement	< 35 ms
Temps de retour	< 35 ms + TMD

(1) La puissance résiduelle est toujours calculée pour une tension primaire de 20 kV. Donc par exemple, pour un réseau de tension primaire 15 kV, le réglage Sw =120 kW entraîne un déclenchement à 90 kW.

SEPED303006FR Schneider Electric

Maximum de puissance active directionnelle

Code ANSI 32P

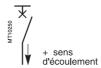
Fonctionnement

Cette fonction peut être utilisée comme :

- protection "maximum de puissance active" pour la gestion d'énergie (délestage) ou
- protection "retour de puissance active" pour la protection contre la marche en moteur d'un alternateur, ou contre la marche en générateur d'un moteur.

Elle est excitée si la puissance active transitant dans un sens ou dans l'autre (fournie ou absorbée) est supérieure au seuil Ps.

Elle comporte une temporisation T à temps indépendant (constant).


Elle est basée sur la méthode des deux wattmètres.

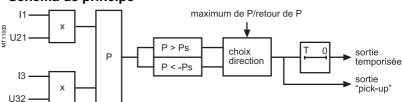
La fonction n'est opérante que si la condition suivante est respectée :

P ≥ 3,1 % Q ce qui permet d'obtenir une grande sensibilité et une grande stabilité en cas de court-circuit.

Le signe de la puissance est déterminée suivant le paramètre général départ ou arrivée en respectant la convention :

- pour le circuit départ :
- □ une puissance exportée par le jeu de barres est positive
- □ une puissance fournie au jeu de barres est négative

■ pour le circuit arrivée :


□ une puissance fournie au jeu de barres est positive

□ une puissance exportée par le jeu de barres est négative

Cette protection fonctionne pour les raccordement V1V2V3, U21/U32 et U21/U32 + V0

Schéma de principe

Caractéristiques

Direction de déclenchement	
Réglage	max. de puissance/retour de puissance
Seuil Ps	
Réglage	1 % Sn ⁽¹⁾ à 120 % Sn ⁽¹⁾
Résolution	0,1 kW
Précision (2)	±0,3 % Sn pour Ps entre 1 % Sn et 5 % Sn
	±5 % pour Ps entre 5 % Sn et 40 % Sn
	±3 % pour Ps entre 40 % Sn et 120 % Sn
Pourcentage de dégagement	(93,5 ±5) %
Ecart de retour mini	0,004 Sn
Temporisation T	
Réglage	100 ms à 300 s
Résolution	10 ms ou 1 digit
Précision	±2 %, ou de - 10 ms à +25 ms
Temps caractéristiques	
Temps de fonctionnement	< 80 ms
Temps de dépassement	< 90 ms
Temps de retour	< 80 ms
(1) On (0 1) on 10	

(1) $Sn = \sqrt{3}$. Unp.In

(2) Dans les conditions de référence (CEI 60255-6).

Maximum de courant phase Code ANSI 50/51

Description

La fonction à maximum de courant phase dispose de 2 jeux de quatre exemplaires appelés respectivement Jeu A et Jeu B.

Par paramétrage il est possible de déterminer le mode de basculement d'un jeu sur l'autre :

- par télécommande (TC3, TC4)
- par entrée logique I13 (I13 = 0 jeu A, I13 = 1 jeu B) ou de forcer l'utilisation du jeu.

Fonctionnement

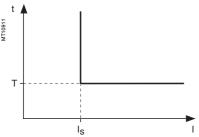
La protection à maximum de courant phase est tripolaire.

Elle est excitée si un, deux ou trois des courants phase atteignent le seuil de fonctionnement.

L'alarme liée au fonctionnement de la protection indique la ou les phases en défaut.

Elle est temporisée, la temporisation peut être à temps indépendant (constant, **DT**) ou à temps dépendant selon les courbes ci-contre.

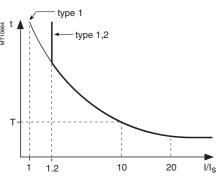
Confirmation


La protection à maximum de courant phase intègre un élément de confirmation paramétrable.

La sortie est confirmée soit :

- par la protection à minimum de tension exemplaire 1
- par la protection à maximum de tension inverse
- pas de confirmation.

Protection à temps indépendant


Is correspond au seuil de fonctionnement exprimé en Ampères, et T correspond au retard de fonctionnement de la protection.

Principe de la protection à temps indépendant.

Protection à temps dépendant

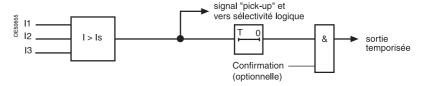
Le fonctionnement de la protection à temps dépendant est conforme aux normes CEI 60255-3, BS 142, IEEE C-37112.

Principe de la protection à temps dépendant.

Le réglage ls correspond à l'asymptote verticale de la courbe, et T correspond au retard de fonctionnement pour 10 ls.

Le temps de déclenchement pour des valeurs de l/ls inférieures à 1,2 dépend du type de courbe choisie.

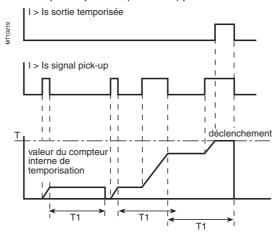
Désignation courbe	Туре
Temps inverse (SIT)	1,2
Temps très inverse (VIT ou LTI)	1,2
Temps extrêmement inverse (EIT)	1,2
Temps ultra inverse (UIT)	1,2
Courbe RI	1
CEI temps inverse SIT / A	1
CEI temps très inverse VIT ou LTI / B	1
CEI temps extrêmement inverse EIT / C	1
IEEE moderately inverse (CEI / D)	1
IEEE very inverse (CEI / E)	1
IEEE extremely inverse (CEI / F)	1
IAC inverse	1
IAC very inverse	1
IAC extremely inverse	1

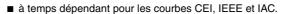

Les équations des courbes sont décrites au chapitre "protections à temps dépendant".

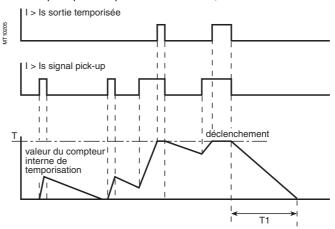
La fonction tient compte des variations du courant pendant la durée de la temporisation.

Pour les courants de très grande amplitude la protection a une caractéristique à temps constant :

- si l > 20 ls, le temps de déclenchement est le temps correspondant à 20 ls
- si I > 40 ln, le temps de déclenchement est le temps correspondant à 40 ln. (In : courant nominal des transformateurs de courant défini lors du réglage des paramètres généraux).


Schéma de principe


Temps de maintien


La fonction intègre un temps de maintien T1 réglable :

■ à temps indépendant (timer hold) pour toutes les courbes de déclenchement.

Maximum de courant phase Code ANSI 50/51

Caractéristiques

Courbe de déclenchement		
Réglage		Indépendant Dépendant : choix selon liste page 3/7
Confirmation		
Réglage		par minimum de tension (exemplaire 1) par maximum de tension inverse sans, pas de confirmation
Seuil Is		
Réglage	A temps indépendant	0,1 In ≤ Is ≤ 24 In exprimé en ampères
	A temps dépendant	0,1 In ≤ Is ≤ 2,4 In exprimé en ampères
Résolution		1 A ou 1 digit
Précision (1)		±5 % ou ±0,01 ln
Pourcentage de dégagement		93,5 % ±5 % (avec écart retour mini 0,015 ln)
Temporisation T (temps de	fonctionnemen	t à 10 ls)
Réglage	A temps indépendant	inst, 50 ms ≤ T ≤ 300 s
	A temps dépendant	100 ms ≤ T ≤ 12,5 s ou TMS ⁽²⁾
Résolution		10 ms ou 1 digit
Précision (1)	A temps indépendant	±2 % ou de -10 ms à +25 ms
	A temps dépendant	Classe 5 ou de -10 ms à +25 ms
Temps de maintien T1		
A temps indépendant		
(timer hold)		0 ; 0,05 à 300 s
A temps dépendant (3)		0,5 à 20 s
Temps caractéristiques		
Temps de fonctionnement		pick-up < 35 ms à 2 ls (typique 25 ms)
		inst < 50 ms à 2 ls (instantané confirmé) (typique 35 ms)
Temps de dépassement		< 35 ms
Temps de retour		< 50 ms (pour T1 = 0)

(1) Dans les conditions de référence (CEI 60255-6).

(2) Plages de réglage en mode TMS (Time Multiplier Setting)

Inverse (SIT) et CEI SIT/A : 0,04 à 4,20 Très inverse (VIT) et CEI VIT/B: 0,07 à 8,33 Très inverse (LTI) et CEI LTI/B: 0,01 à 0,93 Ext inverse (EIT) et CEI EIT/C: 0,13 à 15,47 IEEE moderately inverse : 0,42 à 51,86 0,73 à 90,57 IEEE very inverse: IEEE extremely inverse : 1,24 à 154,32 IAC inverse : 0,34 à 42,08 IAC very inverse: 0,61 à 75,75 IAC extremely inverse : 1,08 à 134,4

(3) Uniquement pour les courbes de déclenchements normalisées de type CEI, IEEE et IAC.

Maximum de courant terre Code ANSI 50N/51N

Description

La fonction à maximum de courant terre dispose de 2 jeux de 4 exemplaires appelés respectivement Jeu A et Jeu B.

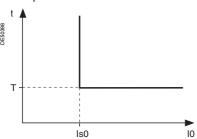
Par paramétrage il est possible de déterminer le mode de basculement d'un jeu sur l'autre :

- par télécommande (TC3, TC4)
- par entrée logique I13 (I13 = 0 jeu A, I13 = 1 jeu B) ou de forcer l'utilisation du jeu.

Fonctionnement

La protection à maximum de courant terre est unipolaire. Elle est excitée si le courant de terre atteint le seuil de fonctionnement.

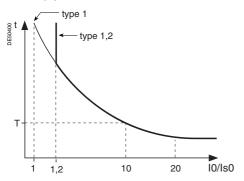
Elle est temporisée, la temporisation peut être à temps indépendant (constant, **DT**) ou à temps dépendant selon courbes ci-contre.


La protection intègre une retenue à l'harmonique 2 qui permet une plus grande stabilité lors des enclenchements des transformateurs.

Cette retenue bloque le déclenchement quel que soit le courant fondamental.

Cette retenue peut être inhibée par paramétrage.

Protection à temps indépendant


Is0 correspond au seuil de fonctionnement exprimé en ampères, et T correspond au retard de fonctionnement de la protection.

Principe de la protection à temps indépendant.

Protection à temps dépendant

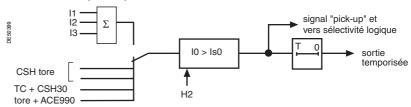
Le fonctionnement de la protection à temps dépendant est conforme aux normes CEI 60255-3, BS 142, IEEE C-37112.

Principe de la protection à temps dépendant.

Le réglage Is correspond à l'asymptote verticale de la courbe, et T correspond au retard de fonctionnement pour 10 ls.

Le temps de déclenchement pour des valeurs de l/ls inférieures à 1,2 dépend du type de courbe choisie.

Désignation courbe	Туре
Temps inverse (SIT)	1,2
Temps très inverse (VIT ou LTI)	1,2
Temps extrêmement inverse (EIT)	1,2
Temps ultra inverse (UIT)	1,2
Courbe RI	1
CEI temps inverse SIT / A	1
CEI temps très inverse VIT ou LTI / B	1
CEI temps extrêmement inverse EIT / C	1
IEEE moderately inverse (CEI / D)	1
IEEE very inverse (CEI / E)	1
IEEE extremely inverse (CEI / F)	1
IAC inverse	1
IAC very inverse	1
IAC extremely inverse	1


Les équations des courbes sont décrites au chapitre "protections à temps dépendant".

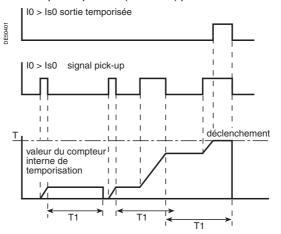
La fonction tient compte des variations du courant pendant la durée de la temporisation.

Pour les courants de très grande amplitude la protection a une caractéristique à temps constant :

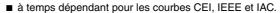
- si I0 > 20 Is0, le temps de déclenchement est le temps correspondant à 20 Is
- si I0 > 20 In0 ⁽¹⁾, le temps de déclenchement est le temps correspondant à 20 In0 (fonctionnement sur l'entrée I0)
- si I0 > 40 In, le temps de déclenchement est le temps correspondant à 40 In (fonctionnement sur somme des courants phases).

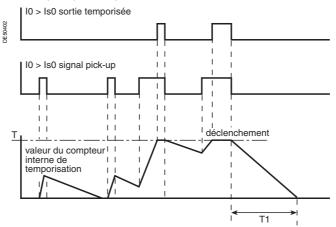
Schéma de principe

Le choix entre I0 (mesurée) et $I0\Sigma$ (calculée par somme des courants phases) est paramétrable pour chaque exemplaire (par défaut exemplaires 1 et 3 sur I0 et exemplaires 2 et 4 sur $I0\Sigma$).


En mixant les 2 possibilités sur les différents exemplaires, cela permet :

- d'avoir des seuils de dynamiques différentes
- d'avoir des utilisations différentes, protection homopolaire et masse cuve par exemple.


Temps de maintien


La fonction intègre un temps de maintien T1 réglable :

■ à temps indépendant (timer hold) pour toutes les courbes de déclenchement

Maximum de courant terre Code ANSI 50N/51N

Caractéristiques

Caracteris	suques	
Courbe de de	éclenchement	
Réglage		Indépendant,
		Dépendant : choix selon liste page 3/9
Seuil Is0		
Réglage à tem	ps indépendant	0,1 ln0 ≤ ls0 ≤ 15 ln0 (1) exprimé en ampères
	Somme de TC (5)	0,1 ln0 ≤ ls0 ≤ 15 ln0
	Avec capteur CSH	
	calibre 2 A	0,2 A à 30 A
	calibre 5 A	0,5 A à 75 A
	calibre 20 A	2 A à 300 A
	TC + CSH30	0,1 ln0 ≤ ls0 ≤ 15 ln0 (mini 0,1 A)
	Tore homopolaire	0,1 ln0 < ls0 < 15 ln0
	avec ACE990	
Réglage à temps dépendant		0,1 ln0 ≤ ls0 ≤ ln0 (1) exprimé en ampères
	Somme de TC (5)	0,1 ln ≤ ls0 ≤ ln0
	Avec capteur CSH	
	calibre 2 A	0,2 A à 2 A
	calibre 5 A	0,5 A à 5 A
	calibre 20 A	2 A à 20 A
	TC + CSH30	0,1 ln0 ≤ ls0 ≤ 1 ln0 (mini 0,1 A)
	Tore homopolaire	
	avec ACE990	0,1 ln0 ≤ ls0 ≤ ln0
Résolution		0,1 A ou 1 digit
Précision (2)		±5 % ou ±0,01 ln0
Pourcentage de dégagement		93,5 % \pm 5 % (avec capteur CSH, TC ou tore + ACE990)
		93,5 % \pm 5 % ou > (1 - 0,015 ln0/ls0) x 100 % (avec somme de TC)
Retenue harr	monique 2	
Seuil fixe		17 % ±5 %
Temporisation	on T (temps de fonctionne	ement à 10 Is0)

(1) In0 = In si la mesure est effectuée sur somme des trois courants phases.

In0 = calibre du capteur si la mesure est effectuée avec capteur CSH. In0 = In du TC ou In/10 suivant paramétrage si la mesure est

effectuée à partir d'un transformateur de courant 1 A ou 5 A. (2) Dans les conditions de référence (CEI 60255-6).

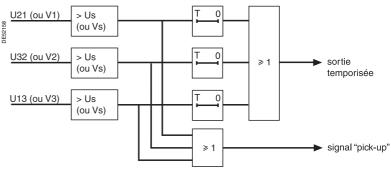
(3) Plages de réglage en mode TMS (Time Multiplier Setting) Inverse (SIT) et CEI SIT/A : 0,04 à 4,20 Très inverse (VIT) et CEI VIT/B : 0,07 à 8,33 Très inverse (LTI) et CEI LTI/B : 0,01 à 0,93 Ext inverse (EIT) et CEI EIT/C: 0,13 à 15,47 IEEE moderately inverse : 0,42 à 51,86 IEEE very inverse: 0,73 à 90,57 IEEE extremely inverse : 1,24 à 154,32 IAC inverse : IAC very inverse : 0,34 à 42,08 0,61 à 75,75

IAC extremely inverse: (4) Uniquement pour les courbes de déclenchements normalisées de type CEI, IEEE et IAC.

(5) Pour Is0 < 0,4 In0, la temporisation minimum est de 300 ms. Si une temporisation plus courte est nécessaire, utiliser le montage TC + CSH30.

1,08 à 134,4

	Tore homopolaire			
	avec ACE990	0,1 ln0 ≤ ls0 ≤ ln0		
Résolution		0,1 A ou 1 digit		
Précision (2)		±5 % ou ±0,01 ln0		
Pourcentage de dégagement		93,5 % ±5 % (avec capteur CSH, TC ou tore + ACE990)		
		93,5 % ±5 % ou > (1 - 0,015 ln0/ls0) x 100 % (avec somme de TC)		
Retenue harn	nonique 2			
Seuil fixe		17 % ±5 %		
Temporisatio	n T (temps de fonctionner	ment à 10 ls0)		
Réglage	A temps indépendant	inst, 50 ms ≤ T ≤ 300 s		
	A temps dépendant	100 ms ≤ T ≤ 12,5 s ou TMS ⁽³⁾		
Résolution		10 ms ou 1 digit		
Précision (2)	A temps indépendant	±2 % ou de -10 ms à +25 ms		
	A temps dépendant	classe 5 ou de -10 ms à +25 ms		
Temps de ma	intien T1			
A temps indépe	endant			
(timer hold)		0; 0,05 à 300 s		
A temps dépen	dant (4)	0,5 à 20 s		
Temps caract	téristiques			
temps de foncti	ionnement	pick-up < 35 ms à 2 ls0 (typique 25 ms)		
		inst < 50 ms à 2 Is0 (instantané confirmé)		
		(typique 35 ms)		
Temps de dépa	assement	< 35 ms		
Temps de retou	ır	< 40 ms (pour T1 = 0)		


Maximum de tension Code ANSI 59

Fonctionnement

Cette protection est monophasée et fonctionne en tension simple ou composée :

- elle est excitée si une des tensions concernées est supérieure au seuil Us (ou Vs)
- elle comporte une temporisation T à temps indépendant (constant)
- en fonctionnement tension simple, elle indique la phase en défaut dans l'alarme associée au défaut.

Schéma de principe

Nota : si la temporisation est réglée à T ms, alors la sortie temporisée est active T ms après la montée du signal "pick-up".

Caractéristiques

Seuil Us (ou Vs)	
Réglage	50 % Unp (ou Vnp) à 150 % Unp (ou Vnp) (2)
Précision (1)	±2 % ou 0,005 Unp
Résolution	1 %
Pourcentage de dégagement	97 % ±1 %
Temporisation T	
Réglage	0 s à 300 s
Précision (1)	±2 %, ou ±25 ms
Résolution	10 ms ou 1 digit
Temps caractéristiques	
Temps de fonctionnement	pick-up < 120 ms
Temps de dépassement	< 35 ms
Temps de retour	< 40 ms

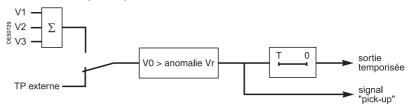
(1) Dans les conditions de référence (CEI 60255-6). (2) 135 % Unp avec TP 230 / √3.

Conditions de race	cordement				
Type de raccordement	V1, V2, V3	U21	U21, U32	U21 + V0	U21, U32 + V0
Fonctionnement en tension simple	Oui	Non	Non	Non	Oui
Fonctionnement en tension composée	Oui	sur U21 uniquement	Oui	sur U21 uniquement	Oui

Caractéristiques spécifiques EDF

Domaine limite de fonctionnement (à gamme	e de précision garantie)							
Les conditions de référence sont définies dans la norme CEI 60255-6. Les points suivants ont été spécifiquement qualifiés pour les besoins EDF.								
Variation de la fréquence du signal d'entrée -20 Hz/s ≤ df/dt ≤ +20 Hz/s								
Variation du déphasage entre phases	$-70^{\circ} \leq \Delta \phi \leq +70^{\circ}$							
Niveaux maximum harmoniques	Taux de réjection [Harmonique 3] > 15 Taux de réjection [Harmoniques >3] > 10							
Temps caractéristiques selon essais EDF								
T N F G (temps de non fonctionnement garanti)	60 ms							
T F G (temps de fonctionnement garanti)	100 ms							
T M M (temps de montée maximal)	122 ms							
T D G M (temps de dégagement maximal) < 40 ms								

Schneider Electric SEPED303006FR 3/11


Maximum de tension résiduelle Code ANSI 59N

Fonctionnement

Cette protection est excitée si la tension résiduelle V0 est supérieure à un seuil Anomalie Vr, avec $\vec{V}0 = \vec{V}1 + \vec{V}2 + \vec{V}3$,

- elle comporte une temporisation T à temps indépendant (constant)
- la tension résiduelle est soit calculée à partir des 3 tensions phases, soit mesurée par TP externe.
- cette protection fonctionne pour les raccordements : V1V2V3, U21U32 + V0 et U21 + V0.

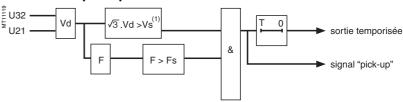
Schéma de principe

Caractéristiques

Seuil anomalie Vr					
Réglage	2 % Unp à 80 % Unp si Vns0 (2) = somme 3V				
	2 % Unp à 80 % Unp si Vns0 (2) = Uns / √3				
	5 % Unp à 80 % Unp si Vns0 (2) = Uns / 3				
Précision (1)	±2 % ou ±0,005 Unp				
Résolution	1 %				
Pourcentage de dégagement	97 % ±1 %				
Temporisation T					
Réglage	0 s à 300 s				
Précision (1)	±2 %, ou ±25 ms				
Résolution	10 ms ou 1 digit				
Temps caractéristiques					
Temps de fonctionnement	pick-up < 120 ms				
Temps de dépassement	< 35 ms				
Temps de retour	< 40 ms				

⁽¹⁾ Dans les conditions de référence (CEI 60255-6). (2) Vns0 est un des paramètres généraux.

3/13


Maximum de fréquence Code ANSI 81H

Fonctionnement

Cette fonction est excitée lorsque la fréquence de la tension directe est supérieure au seuil et si la tension directe est supérieure au seuil Vs.

Si un seul TP est raccordé (U21) la fonction est excitée lorsque la fréquence est supérieure au seuil et si la tension U21 est supérieure au seuil Vs. Elle comporte une temporisation T à temps indépendant (constant).

Schéma de principe

(1) Ou U21 > Vs si un seul TP.

Nota : si la temporisation est réglée à T ms, alors la sortie temporisée est active T ms après la montée du signal "pick-up".

Caractéristiques

Seuil Fs	
Réglage	50 à 55 Hz ou 60 à 65 Hz
Précision (1)	±0,02 Hz
Résolution	0,1 Hz
Ecart de retour	0,25 Hz ±0,1 Hz
Seuil Vs	
Réglage	20 % Un à 50 % Un
Précision (1)	2 %
Résolution	1 %
Temporisation T	
Réglage	0 s à 300 s
Précision (1)	±2 % ou ±25 ms
Résolution	10 ms ou 1 digit
Temps caractéristiques (1)	
Temps de fonctionnement	pick-up < 120 ms
Temps de dépassement	< 40 ms
Temps de retour	< 50 ms

(1) Dans les conditions de référence (CEI 60255-6) et df/dt < 3 Hz/s.

Caractéristiques spécifiques EDF

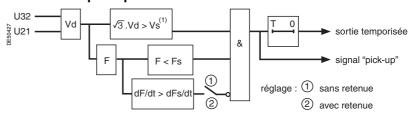
Domaine limite de fonctionnement (à gamme	de précision garantie)							
Les conditions de référence sont définies dans la norme CEI 60255-6. Les points suivants ont été spécifiquement qualifiés pour les besoins EDF.								
Variation de la fréquence du signal d'entrée	-20 Hz/s ≤ df/dt ≤ +20 Hz/s							
Variation du déphasage entre phases	-70° ≤ Δφ ≤ +70°							
Niveaux maximum harmoniques	Taux de réjection [Harmonique 3] > 15 Taux de réjection [Harmoniques >3] > 10							
Temps caractéristiques selon essais EDF								
T N F G (temps de non fonctionnement garanti)	60 ms							
T F G (temps de fonctionnement garanti)	100 ms							
T M M (temps de montée maximal) 120 ms								
T D G M (temps de dégagement maximal) < 40 ms								

SEPED303006FR Schneider Electric

Minimum de fréquence Code ANSI 81L

Fonctionnement

Cette fonction est excitée lorsque la fréquence de la tension directe est inférieure au seuil et si la tension directe est supérieure au seuil Vs.


Si un seul TP est raccordé (U21) la fonction est excitée lorsque la fréquence est inférieure au seuil et si la tension U21 est supérieure au seuil Vs.

Elle comporte une temporisation T à temps indépendant (constant).

La protection intègre une retenue configurable sur variation de fréquence qui inhibe la protection en cas de décroissance continue de la fréquence supérieure au seuil d'inhibition.

Ce réglage permet d'éviter le déclenchement de tous les départs lors de la réalimentation du jeu de barres par la tension rémanente des moteurs, consécutive à la perte de l'arrivée.

Schéma de principe

(1) Ou U21 > Vs si un seul TP.

Nota : si la temporisation est réglée à T ms, alors la sortie temporisée est active T ms après la montée du signal "pick-up".

Caractéristiques

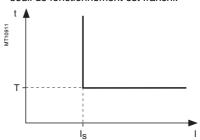
<u>•</u>	
Seuil Fs	
Réglage	40 à 50 Hz ou 50 à 60 Hz
Précision (1)	±0,02 Hz
Résolution	0,1 Hz
Ecart de retour	0,25 Hz ±0,1 Hz
Seuil Vs	
Réglage	20 % Unp à 50 % Unp
Précision (1)	2 %
Résolution	1 %
Retenue sur variation de fréquence	
Réglage	Avec / sans
Seuil dFs/dt	1 Hz/s à 15 Hz/s
Précision (1)	1 Hz/s
Résolution	1 Hz/s
Temporisation T	
Réglage	0 s à 300 s
Précision (1)	±2 % ou ±25 ms
Résolution	10 ms ou 1 digit
Temps caractéristiques (1)	
Temps de fonctionnement	pick-up < 120 ms
Temps de dépassement	< 40 ms
Temps de retour	< 50 ms
(1) Dans les conditions de référence (C	EL 60255 6) at df/dt < 2 Hz/c

(1) Dans les conditions de référence (CEI 60255-6) et df/dt < 3 Hz/s.

Caractéristiques spécifiques EDF

Odracici istiques specifiques Eb	/1					
Domaine limite de fonctionnement (à gamme	de précision garantie)					
Les conditions de référence sont définies dans la Les points suivants ont été spécifiquement qualif						
Variation de la fréquence du signal d'entrée	-20 Hz/s ≤ df/dt ≤ +20 Hz/s					
Variation du déphasage entre phases	-70° ≤ Δφ ≤ +70°					
Niveaux maximum harmoniques	Taux de réjection [Harmonique 3] > 15 Taux de réjection [Harmoniques >3] > 10					
Temps caractéristiques selon essais EDF						
TNFG (temps de non fonctionnement garanti)	60 ms					
T F G (temps de fonctionnement garanti)	100 ms					
T M M (temps de montée maximal) 120 ms						
T D G M (temps de dégagement maximal)	< 40 ms					

Généralités


Courbes de déclenchement

Présentation du fonctionnement et du réglage des courbes de déclenchement des fonctions de protection :

- à temps indépendant
- à temps dépendant
- avec temps de maintien.

Protection à temps indépendant

Le temps de déclenchement est constant. La temporisation est initialisée dès que le seuil de fonctionnement est franchi.

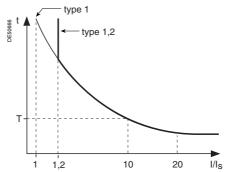
Principe de la protection à temps indépendant

Protection à temps dépendant

Le temps de fonctionnement dépend de la grandeur protégée (le courant phase, le courant terre, ...) conformément aux normes CEI 60255-3, BS 142, IEEE C-37112.

Le fonctionnement est représenté par une courbe caractéristique, par exemple :

- courbe t = f(l) pour la fonction maximum de courant phase
- courbe t = f(10) pour la fonction maximum de courant terre.


La suite du document est basée sur t=f(I) ; le raisonnement peut être étendu à d'autres variables $I0,\,\dots$

Cette courbe est définie par :

- son type (inverse, très inverse, extrêmement inverse, ...)
- son réglage de courant ls qui correspond à l'asymptote verticale de la courbe
- son réglage de temporisation T qui correspond au temps de fonctionnement pour I = 10 Is.

Ces 3 réglages s'effectuent chronologiquement dans cet ordre : type, courant Is, temporisation T.

Modifier le réglage de temporisation T de x %, modifie de x % l'ensemble des temps de fonctionnement de la courbe.

Principe de la protection à temps dépendant.

Le temps de déclenchement pour des valeurs de l/ls inférieures à 1,2 dépend du type de courbe choisie.

Désignation courbe	Туре
Temps inverse (SIT)	1, 2
Temps très inverse (VIT ou LTI)	1, 2
Temps extrêmement inverse (EIT)	1, 2
Temps ultra inverse (UIT)	1, 2
Courbe RI	1
CEI temps inverse SIT / A	1
CEI temps très inverse VIT ou LTI / B	1
CEI temps extrêmement inverse EIT / C	1
IEEE moderately inverse (CEI / D)	1
IEEE very inverse (CEI / E)	1
IEEE extremely inverse (CEI / F)	1
IAC inverse	1
IAC very inverse	1
IAC extremely inverse	1

- lorsque la grandeur surveillée est supérieure à 20 fois le seuil, le temps de déclenchement est maximisé à la valeur correspondant à 20 fois le seuil
- si la grandeur surveillée dépasse la capacité de mesure du Sepam (40 In pour les voies courant phase, 20 In0 pour les voies courant résiduel), le temps de déclenchement est maximisé à la valeur correspondant à la plus grande valeur mesurable (40 In ou 20 In0).

Schneider Electric

Courbes à temps dépendant du courant

De multiples courbes de déclenchement à temps dépendants sont proposées, pour couvrir la plupart des cas d'application :

- courbes définies par la norme CEI (SIT, VIT/LTI, EIT)
- courbes définies par la norme IEEE (MI, VI, EI)
- courbes usuelles (UIT, RI, IAC).

Courbes CEI

Equation	Type de courbe		Valeurs des cœfficients		
		k	α	β	
_	Standard inverse / A	0,14	0,02	2,97	
$td(I) = \frac{K}{C I C R} \times \frac{I}{R}$	Very inverse / B	13,5	1	1,50	
(I) ^{\infty} . P	Long time inverse / B	120	1	13,33	
(is) -1	Extremely inverse / C	80	2	0,808	
	Ultra inverse	315,2	2,5	1	
	Courbe RI Equation : $td(I) = {0,339}$	$\frac{1}{-0,236\left(\frac{l}{ls}\right)^{-1}}$	× T/3,1706		

	Courbes IEEE				
Equation	Type de courbe	Valeurs des cœfficients			
		Α	В	р	β
	Moderately inverse	0,010	0,023	0,02	0,241
	Very inverse	3,922	0,098	2	0,138
Δ Τ	Extremely inverse	5,64	0,0243	2	0,081
$td(I) = \left\lfloor \frac{A}{\left(\frac{I}{Is}\right)^{p} - 1} + B \right\rfloor \times \frac{I}{\beta}$					

Courbes IAC

Equation	Type de courbe	Valeurs	Valeurs des cœfficients				
		Α	В	С	D	E	β
	Inverse	0,208	0,863	0,800	-0,418	0,195	0,297
B D E T	Very inverse	0,090	0,795	0,100	-1,288	7,958	0,165
$td(I) = A + \frac{B}{(1-x)^2} + \frac{B}{(1-x)^2} + \frac{B}{(1-x)^3} \times \frac{B}{B}$	Extremely inverse	0,004	0,638	0,620	1,787	0,246	0,092
$\begin{pmatrix} \begin{pmatrix} \frac{1}{ls} - C \end{pmatrix} & \begin{pmatrix} \frac{1}{ls} - C \end{pmatrix} \end{pmatrix}$							

Généralités

Courbes de déclenchement

T = 1.5 sec TMS = 1 T = 1.5 sec TMS = 1 In the sec TMS = 1 To the sec TMS = 1 To the sec TMS = 1

Réglage des courbes à temps dépendant, temporisation T ou facteur TMS

La temporisation des courbes de déclenchement à temps dépendant du courant (sauf courbes personnalisée et RI) peut se régler :

- soit par temps T, temps de fonctionnement à 10 x ls
- soit par facteur TMS, facteur correspondant à T/β dans les équations ci-contre.

Exemple :
$$t(I) = \frac{13,5}{\frac{I}{Is} - 1} \times TMS$$
 avec $TMS = \frac{T}{1,5}$

La courbe CEI du type VIT est positionnée de manière identique avec : TMS = 1 ou T = 1,5 s.

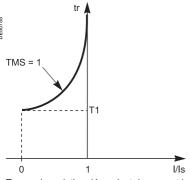
Exemple.

Temps de maintien

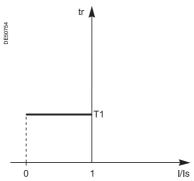
Le temps de maintien T1 réglable (reset time) permet :

- la détection des défauts réamorçants (timer hold, courbe à temps indépendant)
- la coordination avec des relais électromécaniques (courbe à temps dépendant).
- Le temps de maintien peut être inhibé si nécessaire.

Equation de la courbe du temps de maintien à temps dépendant


Equation:
$$tr(I) = \frac{T1}{1 - (\frac{I}{Is})^2} \times \frac{T}{\beta}$$
 avec $\frac{T}{\beta} = TMS$.

T1 = valeur de réglage du temps de maintien (temps de maintien pour I retour = 0 et TMS = 1).


T = valeur de réglage de la temporisation de déclenchement (à 10 ls).

 β = valeur de la courbe de déclenchement de base à $\frac{k}{10^{\alpha}-1}$

Détection des défauts réamorçants grâce au temps de maintien réglable.

Temps de maintien dépendant du courant l.

Temps de maintien constant.

Généralités

Courbes de déclenchement

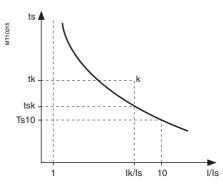
Mise en œuvre de courbes à temps dépendant : exemples de problèmes à résoudre

Problème n° 1

Connaissant le type de temps dépendant, déterminer les réglages de courant ls et de temporisation T.

Le réglage de courant ls correspond a priori au courant maximum qui peut être permanent : c'est en général le courant nominal de l'équipement protégé (câble, transformateur).

Le réglage de la temporisation T correspond au point de fonctionnement à 10 ls de la courbe. Ce réglage est déterminé compte tenu des contraintes de sélectivité avec les protections amont et aval.


La contrainte de sélectivité conduit à définir un point A de la courbe de fonctionnement (IA, tA), par exemple le point correspondant au courant de défaut maximum affectant la protection aval.

Problème n° 2

Connaissant le type de temps dépendant, le réglage de courant ls et un point k (Ik, tk) de la courbe de fonctionnement, déterminer le réglage de temporisation T. Sur la courbe standard du même type, lire le temps de fonctionnement tsk correspondant au courant relatif **Ik/Is** et le temps de fonctionnement Ts10 correspondant au courant relatif **I/Is** = **10**.

Le réglage de temporisation à réaliser pour que la courbe de fonctionnement passe par le point k(lk, tk) est :

$$T = Ts10 \times \frac{tk}{tsk}$$

Autre méthode pratique

Le tableau ci-après donne les valeurs de **K = ts/ts10** en fonction de **I/Is.**Dans la colonne correspondant au type de temporisation lire la valeur **K = tsk/Ts10** sur la ligne correspondant à **Ik/Is.**

Le réglage de temporisation à réaliser pour que la courbe de fonctionnement passe par le point k (lk, tk) est : T = tk/k.

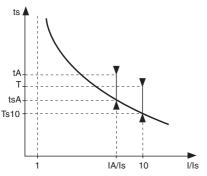
Exemple

Données :

- le type de temporisation : temps inverse (SIT)
- le seuil : Is
- un point k de la courbe de fonctionnement : k (3,5 ls ; 4 s)

Question : quel est le réglage T de la temporisation (temps de fonctionnement à 10 ls) ?

Lecture du tableau : colonne SIT, ligne I/Is = 3,5 donc K = 1,858 Réponse : le réglage de la temporisation est T = 4/1,858 = 2,15 s.


GénéralitésCourbes de déclenchement

Problème n° 3

Connaissant les réglages de courant Is et de temporisation T pour un type de temporisation (inverse, très inverse, extrêmement inverse) trouver le temps de fonctionnement pour une valeur de courant IA.

Sur la courbe standard de même type, lire le temps de fonctionnement tsA correspondant au courant relatif IA/Is et le temps de fonctionnement Ts10 correspondant au courant relatif I/Is = 10.

Le temps de fonctionnement tA pour le courant IA avec les réglages Is et T est tA = tsA x T/Ts10.

Autre méthode pratique :

le tableau ci-après donne les valeurs de K = ts/Ts10 en fonction de I/Is. Dans la colonne correspondant au type de temporisation lire la valeur K = tsA/Ts10 sur la ligne correspondant à IA/Is, le temps de fonctionnement tA pour le courant IA avec les réglages ls et T est tA = K. T.

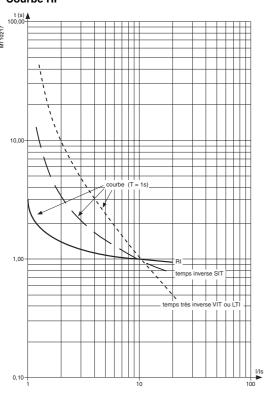
Exemple

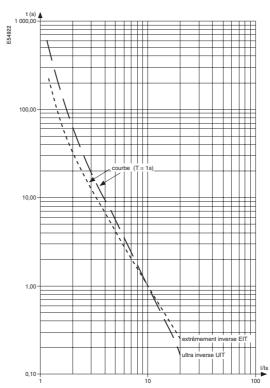
Données:

- le type de temporisation : temps très inverse (VIT)
- le seuil : ls
- la temporisation T = 0,8 s

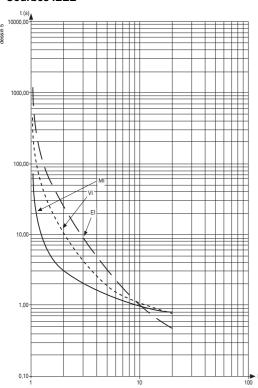
Question : quel est le temps de fonctionnement pour le courant IA = 6 ls ? Lecture du tableau : colonne **VIT**, ligne I/Is = 6, donc k = 1,8.

Réponse : le temps de fonctionnement pour le courant IA est $t = 1.8 \times 0.8 = 1.44 \text{ s}$.

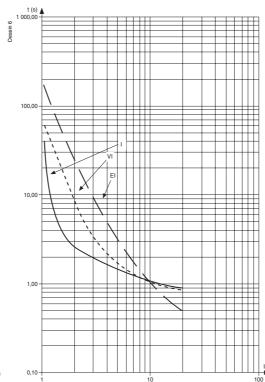

Tableau des valeurs de K


I/Is	SIT	VIT, LTI	EIT	UIT	RI	IEEE MI	IEEE VI	IEEE EI	IAC I	IAC VI	IAC EI
	et CEI/A	et CEI/B	et CEI/C			(CEI/D)	(CEI/E)	(CEI/F)			
,0	— —	—			3.062	-			62.005	62.272	200.226
,1	24,700 (1)	90,000 (1)	471,429 ⁽¹⁾		2,534	22,461	136,228	330,606	19,033	45,678	122,172
1,2	12,901	45,000	225,000	545,905	2,216	11,777	65,390	157,946	9,413	34,628	82,899
1,5	5,788	18,000	79,200	179,548	1,736	5,336	23,479	55,791	3,891	17,539	36,687
2,0	3,376	9,000	33,000	67,691	1,427	3,152	10,199	23,421	2,524	7,932	16,178
2,5	2,548	6,000	18,857	35,490	1,290	2,402	6,133	13,512	2,056	4,676	9,566
3,0	2,121	4,500	12,375	21,608	1,212	2,016	4,270	8,970	1,792	3,249	6,541
3,5	1,858	3,600	8,800	14,382	1,161	1,777	3,242	6,465	1,617	2,509	4,872
4,0	1,676	3,000	6,600	10,169	1,126	1,613	2,610	4,924	1,491	2,076	3,839
4,5	1,543	2,571	5,143	7,513	1,101	1,492	2,191	3,903	1,396	1,800	3,146
5,0	1,441	2,250	4,125	5,742	1,081	1,399	1,898	3,190	1,321	1,610	2,653
5,5	1,359	2,000	3,385	4,507	1,065	1,325	1,686	2,671	1,261	1,473	2,288
6,0	1,292	1,800	2,829	3,616	1,053	1,264	1,526	2,281	1,211	1,370	2,007
6,5	1,236	1,636	2,400	2,954	1,042	1,213	1,402	1,981	1,170	1,289	1,786
7,0	1,188	1,500	2,063	2,450	1,033	1,170	1,305	1,744	1,135	1,224	1,607
7,5	1,146	1,385	1,792	2,060	1,026	1,132	1,228	1,555	1,105	1,171	1,460
3,0	1,110	1,286	1,571	1,751	1,019	1,099	1,164	1,400	1,078	1,126	1,337
3,5	1,078	1,200	1,390	1,504	1,013	1,070	1,112	1,273	1,055	1,087	1,233
9,0	1,049	1,125	1,238	1,303	1,008	1,044	1,068	1,166	1,035	1,054	1,144
9,5	1,023	1,059	1,109	1,137	1,004	1,021	1,031	1,077	1,016	1,026	1,067
10,0	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
10,5	0,979	0,947	0,906	0,885	0,996	0,981	0,973	0,934	0,985	0,977	0,941
11,0	0,959	0,900	0,825	0,787	0,993	0,963	0,950	0,877	0,972	0,957	0,888
11,5	0,941	0,857	0,754	0,704	0,990	0,947	0,929	0,828	0,960	0,939	0,841
12,0	0,925	0,818	0,692	0,633	0,988	0,932	0,912	0,784	0,949	0,922	0,799
12,5	0,910	0,783	0,638	0,572	0,985	0,918	0,896	0,746	0,938	0,907	0,761
13,0	0,895	0,750	0,589	0,518	0,983	0,905	0,882	0,712	0,929	0,893	0,727
13,5	0,882	0,720	0,546	0,471	0,981	0,893	0,870	0,682	0,920	0,880	0,695
14,0	0,870	0,692	0,508	0,430	0,979	0,882	0,858	0,655	0,912	0,868	0,667
14,5	0,858	0,667	0,473	0,394	0,977	0,871	0,849	0,631	0,905	0,857	0,641
15,0	0,847	0,643	0,442	0,362	0,976	0,861	0,840	0,609	0,898	0,846	0,616
15,5	0,836	0,621	0,414	0,334	0,974	0,852	0,831	0,589	0,891	0,837	0,594
16,0	0,827	0,600	0,388	0,308	0,973	0,843	0,824	0,571	0,885	0,828	0,573
16,5	0,817	0,581	0,365	0,285	0,971	0,834	0,817	0,555	0,879	0,819	0,554
17,0	0,808	0,563	0,344	0,265	0,970	0,826	0,811	0,540	0,874	0,811	0,536
17,5	0,800	0,545	0,324	0,246	0,969	0,819	0,806	0,527	0,869	0,804	0,519
18,0	0,792	0,529	0,307	0,229	0,968	0,812	0,801	0,514	0,864	0,797	0,504
18,5	0,784	0,514	0,290	0,214	0,967	0,805	0,796	0,503	0,860	0,790	0,489
19,0	0,777	0,500	0,275	0,200	0,966	0,798	0,792	0,492	0,855	0,784	0,475
19,5	0,770	0,486	0,261	0,188	0,965	0,792	0,788	0,482	0,851	0,778	0,463
20,0	0,763	0,474	0,248	0,176	0,964	0,786	0,784	0,473	0,848	0,772	0,450

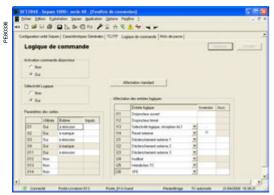
(1) Valeurs adaptées aux seules courbes CEI A, B et C.


Courbes de déclenchement Courbe à temps inverse SIT Courbe à temps très inverse VIT ou LTI Courbe RI

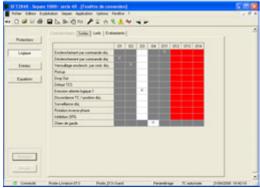
Courbe à temps extrêmement inverse EIT Courbe à temps ultra inverse UIT



Courbes IEEE



Courbes IAC



4/2
4/3
4/3
4/4
4/6
4/8
4/9
4/12
4/13
4/17

Présentation

Paramétrage de la logique de commande.

Matrice de commande.

Editeur d'équation.

Sepam série 48 réalise les fonctions de commande et surveillance de base nécessaires à l'exploitation du réseau électrique, et permet ainsi une réduction du relayage auxillaire.

Fonctions prédéfinies

Les fonctions de commandes et de surveillance sont disponibles dans chaque Sepam en fonction de l'application choisie. Leur utilisation impose un paramétrage exclusif et un câblage particulier des entrées et des sorties.

Ces fonctions disposent d'un paramétrage par défaut permettant une mise en service plus aisée correspondant aux cas d'utilisation les plus fréquents.

Choix des entrées logiques

Le choix de l'utilisation des entrées est réalisé parmi une liste de fonctions disponibles qui couvre toute la variété des utilisations possibles.

Les fonctions utilisées peuvent ainsi être adaptées au besoin dans la limite des entrées logiques disponibles. Les entrées peuvent être inversées pour un fonctionnement à manque tension.

Le logiciel SFT2848 permet de réaliser rapidement une affectation standard des entrées logiques. Elle correspond aux cas d'utilisation les plus courants et permet ainsi un paramétrage rapide des entrées du Sepam.

Editeur d'équations logiques

Cet éditeur permet grâce à des fonctions logiques simples d'adapter les fonctions prédéfinies pour ajouter des nouveaux traitements ou de nouvelles signalisations.

Matrice de commande

Une matrice de commande permet d'affecter les sorties logiques, les voyants et les alarmes aux sorties des fonctions du Sepam. Cette matrice est adaptable avec le logiciel SFT2848. Elle permet, par exemple, d'adapter la signification des voyants en face avant, de modifier les messages d'alarme ou de créer sa propre fonction de commande disjoncteur si la fonction prédéfinie ne convient pas.

Affectations des entrées/sorties logiques

Tableau d'affectation par application

						app.					
Fonctions	E11	E12	E13	E22	E32	E23	E33	E14	E15	E16	Affectation
Entrées logiques		_		•	•	•	•		_		
Position ouvert		-	-	-	-	-	-	-	-	-	l11
Position fermée		•	-	-	•	•	-		-	•	l12
Sélectivité logique, réception AL1		•	-	-	-	-	-			•	Libre
Basculement paramètre A/B		•	-	•	•	•	•	•	-		I13
Reset externe		•	-	•	•	•	•	•	-		Libre
Déclenchement externe 1		•		•	-	-	•	•	-	•	Libre
Déclenchement externe 2		•	-	•	•	•	•	•	-		Libre
Déclenchement externe 3		•	-	•	•	•	•	•	-		Libre
Position fin armement		•		•	-	-	•	•	-	•	Libre
Interdiction TC		•	-	•	•	•	•	•	-		Libre
SF6		•	-	•	•	•	•	•	-		Libre
Synchronisation réseau externe		•		•				•	-		I21
Verrouillage enclenchement		•	-	•	•	•	•	•	-		Libre
Ordre ouverture		•	-	-	-	-	-	-		•	Libre
Ordre fermeture		•		•				•	-		Libre
Fusion fusible TP phase		•	-	-				-	-		Libre
Fusion fusible TP V0		•	-	-	-	-	-	-		•	Libre
Compteur externe énergie active positive		•		•				•	-		Libre
Compteur externe énergie active négative		•	-	-				-	-		Libre
Compteur externe énergie réactive positive		•	-	-				-	-		Libre
Compteur externe énergie réactive négative		-	-	-			-	-	-	-	Libre
Sorties logiques											
Déclenchement	•	-	-	-	-	-	-	-	-	-	O1
Verrouillage de l'enclenchement	•	-	-	-	-	-	-	-	-		O2
Chien de garde	•	-	-	-	-	-	-	-	-		O4
Commande de fermeture		•	-	-	-	-	-	-		•	011

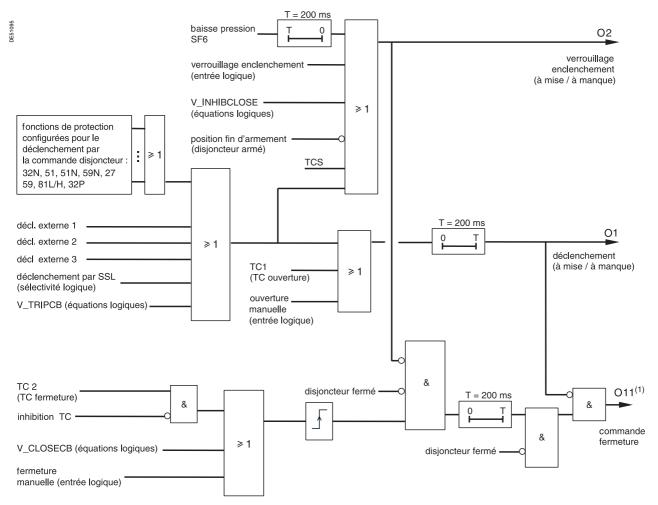
Nota : toutes les entrées logiques sont disponibles sur la communication et accessibles dans la matrice du SFT2848 pour d'autres utilisations non prédéfinies.

Remarque : Le chapitre "Informations spécifiques EDF" (page 4/6) décrit l'affectation spécifique des E/S par rapport au cahier des charges EDF.

Commande disjoncteur

Description

Sepam permet la commande des appareils de coupure équipés des différents types de bobines de déclenchement à émission ou à manque (paramétrage de la sortie O1 en face avant de l'IHM avancée ou SFT2848).


Commande intégrée du disjoncteur

Cette fonction réalise la commande de l'appareil de coupure. Elle est coordonnée avec la fonction sélectivité logique et intègre la fonction antipompage.

En fonction du paramétrage elle réalise les traitements de :

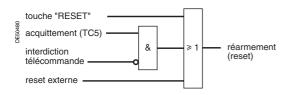
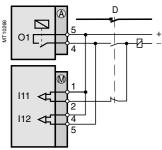
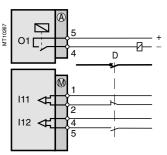

- déclenchement sur la sortie O1 par :
- □ protection (les exemplaires configurés comme déclenchant le disjoncteur)
- □ sélectivité logique
- □ commande à distance via la communication
- □ protection externe
- commande d'ouverture par entrée logique ou par équations logiques
- enclenchement sur la sortie O11 par :
- □ commande à distance via la communication (cette commande peut être interdite par l'entrée logique "interdiction TC")
- □ commande de fermeture par entrée logique ou par équations logiques
- verrouillage d'enclenchement sur la sortie O2 par :
- □ défaut circuit de déclenchement (TCS)
- □ défaut SF6
- □ ordre de verrouillage par entrée logique ou par équations logiques.

Schéma de principe



(1) la commande fermeture n'est disponible qu'en présence de l'option MES114.


Commande disjoncteur

TC1 reçue & discordance TC/position TC2 reçue & TC2 reçue & A

Câblage pour bobine à émission.

Câblage pour bobine à manque.

Accrochage / acquittement

Les fonctions provoquant un déclenchement peuvent être accrochées individuellement lors du paramétrage et réarmées selon plusieurs modes.

Les ordres de déclenchement à accrochage sont mémorisés et leur acquittement est nécessaire pour la remise en service. L'accrochage est mémorisé en cas de coupure de l'alimentation.

L'acquittement est soit réalisé localement sur l'IHM, soit à distance par l'intermédiaire d'une entrée logique ou via la communication.

La télésignalisation TS104 est présente tant que l'acquittement n'a pas eu lieu après un accrochage.

Discordance TC / position disjoncteur

Cette fonction permet de détecter un écart entre la dernière télécommande reçue et la position réelle du disjoncteur.

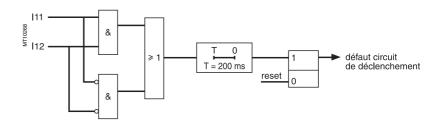
L'information est accessible dans la matrice et à travers la télésignalisation TS105.

Surveillance du circuit de déclenchement et complémentarité Description

Cette surveillance est destinée aux circuits de déclenchement :

■ par bobine à émission

La fonction détecte :


- □ la continuité du circuit
- □ la perte d'alimentation
- □ la non complémentarité des contacts de positions.
- La fonction inhibe la fermeture de l'appareil de coupure.
- par bobine à manque de tension

La fonction détecte :

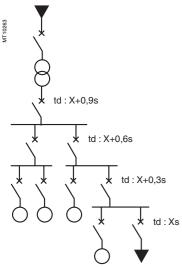
□ la non complémentarité des contacts de positions, la surveillance de la bobine n'étant dans ce cas pas nécessaire.

L'information est accessible dans la matrice et à travers la télésignalisation TS106.

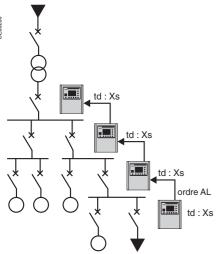
Schéma de principe

Surveillance des ordres ouverture et fermeture

Suite à une commande d'ouverture ou de fermeture du disjoncteur, on vérifie au bout d'une temporisation de 200 ms si le disjoncteur a bien changé son état.
Si l'état du disjoncteur n'est pas conforme à la dernière commande passée, un message "Défaut commande" ainsi que la TS108 sont générés.

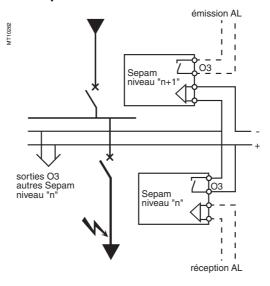

Sélectivité logique Réseau en antenne

Utilisation


Cette fonction permet d'obtenir :

- une sélectivité au déclenchement parfaite
- une réduction considérable du retard au déclenchement des disjoncteurs situés les plus près de la source (inconvénient du procédé classique de sélectivité chronométrique).

Ce système s'applique aux protections à maximum de courant phase, terre et terre directionnelle à temps indépendant (temps constant DT) ou à temps dépendant (temps inverse SIT, temps très inverse VIT, temps extrêmement inverse EIT et temps ultra inverse UIT)


Ex : distribution en antenne avec utilisation de la sélectivité chronométrique (td : temps de déclenchement, courbes à temps indépendant).

Ex : distribution en antenne avec utilisation du système de sélectivité logique du Sepam.

Avec un tel système, les réglages des temporisations sont à fixer par rapport à l'élément à protéger sans se préoccuper de l'aspect sélectivité.

Principe de fonctionnement

Lorsqu'un défaut se produit dans un réseau en antenne, le courant de défaut parcourt le circuit entre la source et le point de défaut :

- les protections en amont du défaut sont sollicitées
- les protections en aval du défaut ne sont pas sollicitées
- seule la première protection en amont du défaut doit agir.

Chaque Sepam est apte à émettre et recevoir un ordre d'attente logique sauf pour les Sepam moteur (1) qui ne peuvent qu'émettre un ordre d'attente logique. Lorsqu'un Sepam est sollicité par un courant de défaut :

- il émet un ordre d'attente logique sur la sortie O3 (2)
- il provoque le déclenchement du disjoncteur associé s'il ne reçoit pas un ordre d'attente logique sur l'entrée TOR attente logique (3).

L'émission de l'attente logique dure le temps nécessaire à l'élimination du défaut. Elle est interrompue après une temporisation qui tient compte du temps de fonctionnement de l'appareil de coupure et du temps de retour de la protection. Ce système permet de minimiser la durée du défaut, d'optimiser la sélectivité et de garantir la sécurité dans des situations dégradées (défaillance de filerie ou d'appareillage).

Test du fil pilote

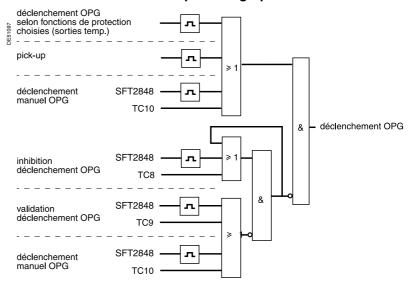
Le test du fil pilote peut être réalisé à l'aide de la fonction test des relais de sortie.

- (1) Les Sepam moteur ne sont pas conditionnés par la réception d'une attente logique puisqu'ils sont destinés uniquement à des récepteurs.
- (2) Paramétrage par défaut.
- (3) Selon paramétrage et présence d'un module complémentaire MES114.

vers reset protections exécuté le cycle suivant

Schéma de principe : Applications E11, E12, E13 max.de I (2) exemplaire 1 inst. exemplaire 2 inst. sortie Oxx (1): émission AL max.de I0 (2) 0 vers émission AL exemplaire 1 inst. T = 2 cycles exemplaire 2 inst. & PWH T = 200 ms exemplaire 1 inst. inhibition émission AL si défaut non éliminé émission AL réception AL max.de I (chrono.) exemplaire 3 tempo. réglages des tempo. exemplaire 4 tempo. pour une sélectivité max.de I0 (chrono.) chronométrique exemplaire 3 tempo. exemplaire 4 tempo. déclenchement par SSL exemplaire 2 tempo. max.de I (SSL) exemplaire 1 tempo. réglages des tempo. pour une sélectivité exemplaire 2 tempo. max.de I0 (SSL) logique exemplaire 1 tempo. exemplaire 2 tempo. exemplaire 1 tempo. & réception AL

(1) Selon paramétrage (O3 par défaut).

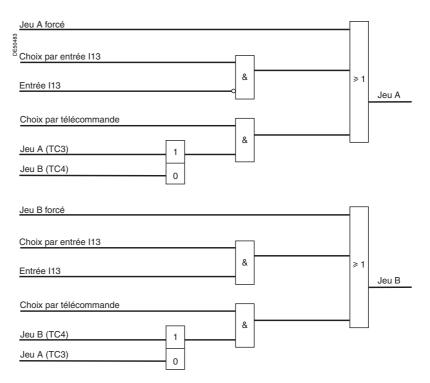

(entrée logique)

T = 2 cycles + 200 ms

(2) L'action instantanée (inst) correspond à l'information signal "pick-up" de la protection.

Déclenchement de l'oscilloperturbographie Basculement jeu de réglage

Déclenchement de l'oscilloperturbographie



Basculement jeu de réglage

Les protections maximum de courant phase, maximum de courant terre, maximum de courant phase directionnelle et maximum de courant terre directionnelle disposent de deux jeux de réglages jeu A / jeu B. Le basculement d'un jeu de réglage à un autre permet d'adapter les caractéristiques des protections à l'environnement électrique de l'application (changement de régime de neutre, passage en production locale, ...). Il est global et s'applique donc à l'ensemble des exemplaires des protections citées plus haut.

Par paramétrage on détermine le mode de basculement des jeux de réglages :

- basculement suivant position de l'entrée logique I13 (0 = Jeu A, 1 = jeu B)
- basculement par télécommande (TC3, TC4)
- jeu A ou Jeu B forcé.

Signalisation locale

Un événement peut être signalé localement en face avant de Sepam par :

- apparition d'un message sur l'afficheur de l'IHM avancée
- allumage d'un des 9 voyants jaunes de signalisation.

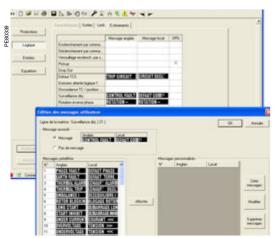
Signalisation par messages

Messages prédéfinis

Tous les messages associés aux fonctions standard d'un Sepam sont prédéfinis et disponibles en 2 versions linguistiques :

- en anglais, messages usine, non modifiables
- et en langue locale, suivant version livrée.

Le choix de la version linguistique s'effectue lors du paramétrage de Sepam. Ils sont visibles sur l'afficheur des Sepam équipés de l'IHM avancée et sur l'écran Alarmes de SFT2848.


■ le nombre et la nature des messages prédéfinis dépend du type de Sepam, le tableau ci-dessous donne la liste exhaustive de tous les messages prédéfinis.

Fonctions	Anglais (usine)	Langue locale (ex. : Français)
Maximum de courant phase	PHASE FAULT (1)	DEFAUT PHASE (1)
Maximum de courant terre	EARTH FAULT	DEFAUT TERRE
Pression	PRESSURE ALM.	PRESSION ALARME
	PRESSURE TRIP	PRESSION DECL ^T .
Declenchement externe x (1 à 3)	EXT. TRIP x (1 to 3)	DECL ^T . EXT. x (1 à 3)
Surveillance circuit déclenchement	TRIP CIRCUIT	CIRCUIT DECL ^T .
Commande disjoncteur	CONTROL FAULT	DEFAUT COM ^{DE} .
SF6	SF6 LOW	BAISSE SF6
Surveillance TP phase	VT FAULT	DEFAUT TP
Surveillance TP V0	VT FAULT V0	DEFAUT TP V0
Surveillance TC	CT FAULT	DEFAUT TC
Maximum de puissance wattmétrique homopolaire	DIR. EARTH FAULT	INSTANTANE DEFAUT AVAL (2)
Maximum de tension résiduelle	V0 FAULT	ANOMALIE VR (2)

⁽¹⁾ Avec indication de la phase en défaut.

⁽²⁾ Après paramétrage.

Signalisation locale

Editeur de messages personnalisés

Messages utilisateur personnalisés

30 messages supplémentaires peuvent être créés avec le logiciel SFT2848 pour associer un message à une entrée logique ou au résultat d'une équation logique par exemple, ou remplacer un message prédéfini par un message personnalisé.

Editeur de messages utilisateur personnalisés dans SFT2848

L'éditeur de messages personnalisés est intégré dans le logiciel SFT2848, et est accessible en mode connecté ou non, à partir de l'écran matrice de commande :

- afficher à l'écran l'onglet "Evénement" associé aux "Protections" : les messages prédéfinis associés aux fonctions de protection apparaissent
- double-cliquer sur un des messages affiché pour lancer l'éditeur de messages

Fonctions de l'éditeur de messages personnalisés

- création et modification des messages personnalisés :
- □ en anglais et en langue locale
- □ par saisie de texte ou par importation d'un fichier bitmap (*.bmp) existant ou par dessin point à point
- suppression des messages personnalisés
- affectation des messages prédéfinis ou personnalisés à un événement défini dans la matrice de commande :
- □ à partir de l'écran matrice de commande, onglet "Evénements", double-cliquer sur l'événement à associer à un nouveau message
- □ sélectionner le nouveau message, prédéfini ou personnalisé, parmi les messages
- □ et "Affecter" le à l'événement.

Un même message peut être affecté à plusieurs événements, sans limitation.

Affichage des messages dans SFT2848

- les messages prédéfinis sont en mémoire du Sepam et apparaissent :
- □ en clair en mode connecté
- □ sous forme de numéro de code en mode non-connecté
- les messages personnalisés sont sauvegardés avec les autres paramètres et réglages du Sepam et apparaissent en clair en mode connecté et en mode nonconnecté.

Traitement des messages sur l'afficheur de l'IHM avancée

Lors de l'apparition d'un événement, le message associé s'impose sur l'afficheur de l'IHM avancée.

Une action sur la touche efface le message, et autorise la consultation normale de tous les écrans de l'IHM avancée.

Une action sur la touche est nécessaire pour acquitter les événements accrochés (sorties des protections par exemple).

La liste des messages reste accessible dans l'historique des alarmes (touche (A)), où les 16 derniers messages sont conservés. Les 250 derniers messages sont consultables dans le SFT2848.

Pour supprimer les messages conservés dans l'historique des alarmes, il faut :

- afficher l'historique des alarmes sur l'IHM avancée
- appuyer sur la touche (clear).

4/11

Fonctions de commande et de surveillance

Signalisation par voyants

Les 9 voyants jaunes de signalisation en face avant de Sepam sont affectés par défaut en fonction du type d'application :

Voyant	Evénement	Libellé étiquette en face avant					
Applications E22, E23, E32, E33							
L1	Déclenchement protection C13100	C13100					
L2	Déclenchement protection B61.41	B61.41					
L3	Anomalie Vr	Ano Vr					
L4	RSE en cours	RSE					
L5	Inhibition système	Inhib B61					
L6	Défaillance télédécouplage	Teledec					
L7	Off	Off					
L8	On	On					
L9	Déclenchement	Trip					
Application	ns E14, E15						
L1	Déclenchement protection 27, 59 ou 59N	U					
L2	Déclenchement protection 81H ou 81L	F					
L3	Déclenchement protection 32P	Р					
L4	RSE en cours	RSE					
L5	Inhibition système	Inhib B61					
L6	Défaillance télédécouplage	Teledec					
L7	Off	Off					
L8	On	On					
L9	Déclenchement	Trip					
Application	ns E11, E12, E13						
L1	Déclenchement protection 51	l > 51					
L2	Déclenchement protection 32N	PWH > 32N					
L3	Déclenchement protection 51N	I0 > 51N					
L4							
L5	Déclenchement extérieur	Ext					
L6	Signalisation 59N	Ano VR					
L7	Off	Off					
L8	On	On					
L9	Déclenchement	Trip					

Ce paramétrage par défaut peut être personnalisé avec le logiciel SFT2848 :

- l'affectation d'un voyant à un événement est à définir dans l'écran matrice de commande, onglet "Leds"
- l'édition et l'impression de l'étiquette personnalisée sont proposés dans le menu "Sepam"

SEPED303006FR Schneider Schneider

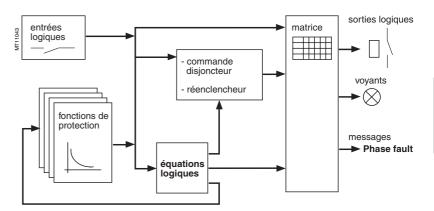
Matrice de commande

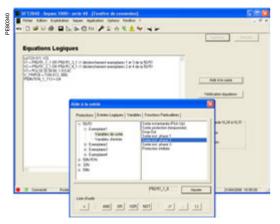
La matrice de commande permet d'affecter simplement les sorties logiques et les voyants aux informations produites par les protections, la logique de commande et les entrées logiques. Chaque colonne réalise un OU logique entre toutes les lignes sélectionnées.

La matrice permet également de visualiser les alarmes associées aux informations et garantit la cohérence du paramétrage avec les fonctions prédéfinies. Les informations suivantes sont gérées dans la matrice de commande et sont paramétrables par le logiciel SFT2848.

Information	Signification	Remarque
Bouton "protection"		
Toutes les protections de l'application	Sortie temporisée de la protection et sorties complémentaires le cas échéant	Actions complémentaires dans onglet "Caractéristique" : En service / hors service Accrochage de la protection Participation de la protection au déclenchement du disjoncteur
Bouton "entrée logique"		
Entrées logiques I11 à I14	Suivant configuration	Si module MES114 configuré
Entrées logiques I21 à I26	Suivant configuration	Si module MES114 configuré
Bouton "logique"		
Déclenchement	Déclenchement par la fonction commande disjoncteur	Forcé sur O1
Verrouillage Enclenchement	Verrouillage de l'enclenchement par la fonction commande disjoncteur	Forcé sur O2
Enclenchement	Enclenchement par la fonction commande disjoncteur	Forcé sur O11 (nécessite une MES114)
Pick up	OU logique de la sortie instantanée de toutes les protections	
Drop out	Le compteur de temporisation d'une protection n'est pas encore revenu à 0.	
Défaut TCS	Défaut circuit de déclenchement	
Discordance TC	Discordance entre le dernier état commandé par la téléconduite et la position du disjoncteur	
Surveillance disjoncteur	Un ordre d'ouverture ou de fermeture du disjoncteur n'a pas été exécuté	
Inhibition OPG	Oscilloperturbographie inhibée	
Emission attente logique 1	Emission de l'attente logique vers le Sepam suivant dans la chaîne de sélectivité logique 1	Par défaut 03
Déclenchement par SSL	Ordre de déclenchement émis par la fonction sélectivité logique	Seulement dans le cas de l'utilisation de la fonction sélectivité logique sans la fonction commande disjoncteur
Rotation inverse	Les tensions mesurées tournent en sens inverse	
Chien de garde	Surveillance du bon fonctionnement du Sepam	Toujours sur O4 si utilisé
Bouton "équation"		
V1 à V10	Sorties de l'éditeur d'équations logiques	

Equations logiques


Utlisation


Cette fonction permet par configuration de réaliser des fonctions logiques simples en combinant des informations en provenance des fonctions de protection ou des entrées logiques.

En utilisant des opérateurs logiques (AND, OR, XOR, NOT) et des temporisations, de nouveaux traitements et de nouvelles signalisations peuvent être ajoutés à ceux déià existants.

Ces fonctions logiques produisent des sorties qui peuvent être utilisées :

- dans la matrice pour commander un relais de sortie, allumer une led ou afficher un nouveau message
- dans les protections pour créer de nouvelles conditions d'inhibition ou de reset par exemple
- dans la commande disjoncteur pour ajouter des cas de déclenchement, de fermeture ou de verrouillage du disjoncteur
- dans l'oscilloperturbographie pour enregistrer une information logique particulière.

Editeur d'équations logiques.

Configuration des fonctions logiques

Les fonctions logiques sont saisies sous forme textuelle dans l'éditeur du SFT2848. Chaque ligne comprend une opération logique dont le résultat est affecté à une variable.

Exemple

V1 = P5051_2_3 OR I12

Les lignes sont exécutées en séquence toutes les 14 ms.

Description des traitements

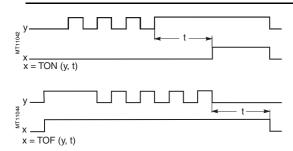
Opérateurs

- NOT : inversion logique
- OR: OU logique
- AND : ET logique
- XOR : OU exclusif. V1 XOR V2 est équivalent à (V1 AND (NOT V2)) OR

(V2 AND (NOT V1))

- = : affectation d'un résultat
- //: début d'un commentaire, les caractères à droite ne sont pas traités
- (,) : les traitements peuvent être regroupés entre parenthèses.

Fonctions


- x = SR(y, z) : bistable avec priorité au Set
- □ x est mis à 1 quand y vaut 1
- □ x est mis à 0 quand z vaut 1 (et y vaut 0)
- □ x est inchangé dans les autres cas.
- LATCH(x, y, ...): accrochage des variables x, y, ...
 Ces variables seront maintenues constamment à 1 après av

Ces variables seront maintenues constamment à 1 après avoir été positionnées une première fois. Elles sont remises à 0 suite au reset du Sepam (bouton reset, entrée externe ou télécommande).

La fonction LATCH accepte autant de paramètres que de variables que l'on veut accrocher.

Elle porte sur l'ensemble du programme, quelle que soit sa position dans le programme. Pour améliorer la lisibilité, il est conseillé de la placer en début de programme.

Equations logiques

■ x = TON(y, t): temporisation à la montée (retard)

La variable x suit avec un retard t le passage à 1 de la variable y (t en ms).

■ x = **TOF**(y, t): temporisation à la descente (prolongation). La variable x suit avec un retard le passage à 0 de la variable y (t en ms).

\blacksquare x = PULSE(d, i, n) : horodateur

Permet de générer n impulsions périodiques, séparées par un intervalle de temps i à partir de l'heure de début d

□ d est exprimé en heure:minute:seconde

□ i est exprimé en heure:minute:seconde

□ n est un nombre entier (n = -1 : répétition jusqu'à la fin de la journée). Exemple V1 = PULSE (8:30:00, 1:0:0,4) va générer 4 impulsions séparées d'une heure à 8 h 30, 9 h 30, 10 h 30, 11 h 30. Cela se répétera toutes les 24 heures. Les impulsions durent un cycle de 14 ms. V1 prend la valeur 1 pendant ce cycle. Si nécessaire V1 peut être prolongée avec les fonctions **TOF**, **SR** ou **LATCH**.

Variables d'entrées

Elles proviennent soit des protections, soit des entrées logiques. Elles ne peuvent apparaître qu'à droite du signe d'affectation :

- I11 à I14, I21 à I26 : Entrée logique
- Pprotection_exemplaire_information : sortie d'une protection.

Exemple : **P50/51_2_1**, protection maximum de courant, exemplaire 2, information 1 : sortie temporisée. Les numéros d'information sont détaillés dans la table ci-après.

Variables de sorties

Elles sont dirigées soit vers la matrice, soit vers les protections, soit vers les fonctions de la logique de commande. Elles ne peuvent apparaître qu'à gauche du signe d'affectation.

Les variables de sorties ne doivent être utilisées qu'une seule fois, sinon seule la dernière affectation sera prise en compte :

■ sorties vers la matrice : V1 à V10

Ces sorties sont présentes dans la matrice et peuvent donc commander un voyant, une sortie relais ou un message.

- sorties vers une entrée de protection : Pprotection_exemplaire_information Exemple : P59_1_113, protection maximum de tension, exemplaire 1, information 113 : inhibition de la protection. Les numéros d'information sont détaillés dans la table ci-après.
- sorties vers la logique de commande :
- □ V_TRIPCB : déclenchement du disjoncteur par la fonction commande disjoncteur. Permet de compléter les conditions de déclenchement du disjoncteur et de lancement du réenclencheur.
- □ V_CLOSECB : fermeture du disjoncteur par la fonction commande disjoncteur. Permet de générer un ordre de fermeture du disjoncteur sur une condition particulière
- □ V_INHIBCLOSE : inhibition de la fermeture du disjoncteur par la fonction commande disjoncteur. Permet d'ajouter des conditions d'inhibition de la fermeture du disjoncteur
- □ V_FLAGREC : information enregistrée dans l'oscilloperturbographie. Permet d'enregistrer un état logique spécifique en plus de ceux déjà présents dans l'oscilloperturbographie.

Variables locales

Variables destinées à des calculs intermédiaires. Elles ne sont pas disponibles en dehors de l'éditeur d'équation logique. Elles peuvent apparaître à gauche ou à droite du signe d'affectation. Elles sont au nombre de 31 : **VL1** à **VL31**.

Deux constantes sont également prédéfinies : K_1 toujours égale à 1 et K_0 toujours égale à 0.

Les variables VL24 à VL31 (sauvegardées en EEPROM) peuvent être restituées (par défaut) ou non au démarrage du Sepam.

Equations logiques

Détail des entrées/sorties des protections

Le tableau ci-dessous liste les informations d'entrées/sorties disponibles pour chaque fonction de protection. Le logiciel SFT2848 est doté d'un outil d'aide à la saisie qui permet d'identifier rapidement chaque information :

- les numéros inférieurs à 100 correspondent aux sorties des protections utilisables en variables d'entrée des équations
- les numéros compris entre 100 et 199 correspondent aux entrées des protections utilisables en variable de sortie des équations

Table des variables d'entrées et de sorties des fonctions de protection

	1	1			ues vari	-	-		•	•		
Libellé	Bit	27/27S	32N	32P	50/51	50N/51N	59	59N	81H	81L	TC	TP
Sorties												
Sortie instantanée (Pick-up)	1		=	-	•	•	•	•	-	•		
Sortie protection (temporisée)	3						-	-	-			-
Drop-out	4											
Sortie instantanée	6		•									
zone inverse												
Défaut phase 1	7	(1)					(1)					
Défaut phase 2	8	(1)					(1)					
Défaut phase 3	9	(1)					(1)					
Protection inhibée	16	-		-				•				•
Entrées												
Reset	101	•	-	•	•	-	•	•	•	•		
Défaut TP	103											•
Inhibition	113	-		-				•				•
Inhibition temporisation de déclenchement	114	•					-		-			
Puissance active positive				•								
Puissance active négative												
(4)			- 			1	1	1	1			-

⁽¹⁾ Lorsque la protection est utilisée en tension simple.

Traitement sur perte d'alimentation auxiliaire

Les variables V1 à V10, VL1 à VL 31 et V_TRIPCB, V_CLOSECB, V_INHIBCLOSE, V_FLAGREC sont sauvegardées lors de la coupure de l'alimentation auxiliaire du Sepam. Leur état est restitué à la remise sous tension, et permet ainsi de conserver les états produits par les opérateurs à mémoire de type LATCH, SR ou PULSE.

Cas particuliers

- les expressions comportant des opérateurs OR, AND, XOR ou NOT différents doivent être obligatoirement munies de parenthèses :
- □ V1 = VL1 AND I12 OR P27/27S_1_1. // expression incorrecte
- □ V1 = (VL1 AND I12) OR P27/27S_1_1. // expression correcte
- □ V1 = VL1 OR I12 OR P27/27S_1_1. // expression correcte
- seules les variables V1 à V10, VL1 à VL31 et V_TRIPCB, V_CLOSECB,
- V_INHIBCLOSE, V_FLAGREC sont autorisées dans la fonction LATCH
 les paramètres des fonctions ne peuvent pas être des expressions :
- les parametres des ionictions ne peuvent pas etre des expressions
- □ VL3 = TON ((V1 AND V3), 300) // expression incorrecte
- □ VL4 = V1 AND V3
- □ VL3 = TON (VL4, 300) // correct.

Limite d'utilisation

Le nombre d'opérateur et de fonctions (OR, AND, XOR, NOT, =, TON, TOF, SR, PULSE) est limité à 100.

Exemples d'application

■ accrochage de l'information déclenchement définitif du réenclencheur Par défaut cette information est impulsionnelle en sortie du réenclencheur. Si les conditions d'exploitation le nécessite elle peut être accrochée de la manière suivante :

LATCH (V1) // V1 est accrochable

V1 = P79_1_204 // sortie "déclenchement définitif" du réenclencheur.

V1 peut ensuite commander un voyant ou une sortie relais dans la matrice.

■ accrochage d'un voyant sans accrocher la protection

Certaines conditions d'exploitation demandent d'accrocher les signalisations en face avant du Sepam mais pas la sortie de déclenchement 01.

LATCH (V1, V2)

V1 = P50/51_1_1 OR P50/51_3_1 // déclenchement exemplaires 1 et 3 de la 50/51 V2 = P50/51_2_1 OR P50/51_4_1 // déclenchement exemplaires 2 et 4 de la 50/51 V1 et V2 doivent être configurés dans la matrice pour commander 2 voyants de face avant.

- déclenchement du disjoncteur si l'entrée l13 est présente plus de 300 ms. V_TRIPCB = TON (l13, 300).
- travaux sous tension (exemple 1)

Si des travaux sous tension sont en cours (indiqué par l'entrée I25), on souhaite changer le comportement du relais de la façon suivante :

- 1 déclenchement du disjoncteur par les sorties instantanées des protections 50/51 exemplaire 1 ou 50N/51N, exemplaire 1 ET si entrée l25 présente :
- V_TRIPCB = (P50/51_1_1 OR P50N/51N_1_1) AND I25
- 2 Inhibition du réenclencheur :

P79_1_113 = I25

■ travaux sous tension (exemple 2)

On souhaite inhiber les fonctions de protection 50N/51N et 46 par une entrée I24 :

P50N/51N_1_113 = I24

P46_1_113 = I24

■ validation d'une protection 50N/51N par l'entrée logique I21

Une protection 50N/51N réglée avec un seuil très bas doit uniquement conduire au déclenchement du disjoncteur si elle est validée par une entrée. Cette entrée provient d'un relais qui mesure de façon précise le courant dans le point neutre :

V_TRIPCB = P50N/51N_1_3 AND I21

4/17

Présentation

La sûreté d'un équipement est la propriété qui permet à ses utilisateurs de placer une confiance justifiée dans le service qu'il leur délivre.

Pour un relais de protection Sepam, la sûreté de fonctionnement consiste à assurer la disponibilité et la sécurité de l'installation. Ceci revient à éviter les 2 situations suivantes :

■ le déclenchement intempestif de la protection

La continuité de la fourniture de l'énergie électrique est impérative aussi bien pour un industriel que pour un distributeur d'électricité. Un déclenchement intempestif dû à la protection peut générer des pertes financières considérables. Cette situation a une incidence sur la disponibilité de l'installation.

■ le non déclenchement de la protection

Les conséquences d'un défaut non éliminé peuvent être catastrophiques. Pour la sécurité de l'exploitation, le relais de protection doit détecter sélectivement et au plus vite les défauts du réseau électrique. Cette situation a une incidence sur la sécurité de l'installation

Autotests et fonctions de surveillance

A son initialisation et de façon cyclique lors de son fonctionnement, Sepam réalise une série d'autotests. Ces autotests sont destinés à détecter une éventuelle défaillance de ses circuits internes et externes afin de mettre Sepam dans une position sûre. Ces défaillances sont classées en 2 catégories, les défaillances majeures et les défaillances mineures :

- Une défaillance majeure atteint les ressources matérielles utilisées par les fonctions de protection (mémoire programme et entrée analogique par exemple). Ce type de défaillance risque d'entraîner un non déclenchement sur défaut ou un déchenchement intempestif. Dans ce cas, Sepam doit passer en position de repli au plus vite.
- Une défaillance mineure touche les fonctions périphériques de Sepam (affichage, communication).

Ce type de défaillance n'empêche pas Sepam d'assurer la protection de l'installation ainsi que sa continuité de service. Sepam fonctionne alors en mode dégradé. Le classement des défaillances en 2 catégories améliore la sécurité ainsi que la disponibilité de l'installation.

La possibilité d'une défaillance majeure de Sepam doit être prise en compte dans le choix du type commande de déclenchement pour privilégier la disponibilité ou la sécurité de l'installation (voir "Choix de la commande du déclenchement" page 4/20).

En plus des autotests, l'exploitant peut activer des fonctions de surveillance pour améliorer la surveillance de l'installation :

- surveillance TP (code ANSI 60FL),
- surveillance TC (code ANSI 60),
- surveillance des circuits de déclenchement et d'enclenchement (code ANSI 74),

Ces fonctions envoient un message d'alarme sur l'afficheur de Sepam et une information est automatiquement disponible à la communication pour alerter l'exploitant.

SEPED303006FR Schneider Schneider

Autotests

Les autotests sont effectués à l'initialisation de Sepam et/ou pendant son fonctionnement.

Liste des autotests qui placent Sepam en position de repli

Les défaillances qui en sont la cause sont considérées comme majeures.

Fonction	Type de test	Période d'exécution				
Alimentation						
	Présence alimentation	En fonctionnement				
Unité de calcul						
	Processeur	A l'initialisation et en fonctionnement				
	Mémoire RAM	A l'initialisation et en fonctionnement				
Mémoire programme						
	Checksum	En fonctionnement				
Mémoire paramètres						
	Checksum	A l'initialisation				
Entrées analogiques						
	Courant	En fonctionnement				
	Tension	En fonctionnement				
Connexion						
	CCA630	A l'initialisation et en fonctionnement				
	MES114	A l'initialisation et en fonctionnement				

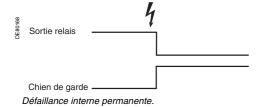
Liste des autotests qui ne placent pas Sepam en position de repli

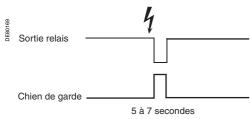
Les défaillances qui en sont la cause sont considérées comme mineures.

Fonction IHM	Type de test	Période d'exécution
	Présence module	A l'initialisation et en fonctionnement
Sortie analogique		
	Présence module	A l'initialisation et en fonctionnement

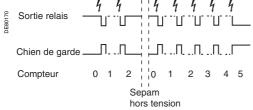
Fonctions de commande et de surveillance

Position de repli


Lorsque Sepam est en état de marche, il effectue en permanence des autotests. La détection d'une défaillance majeure place Sepam en position de repli.


Etat de Sepam en position de repli

- Tous les relais de sortie sont forcés à l'état de repos,
- Toutes les fonctions de protection sont inhibées,
- La sortie chien de garde signale la défaillance (sortie à l'état repos),
- Un voyant rouge en face avant de Sepam est allumé et un message de diagnostic apparaît sur l'afficheur de Sepam (voir "Signalisation locale" page 4/9).


Traitement des défaillances par Sepam

- Défaillance mineure : Sepam passe en état de marche dégradée. La défaillance est signalée sur l'afficheur Sepam ainsi que par la communication. Sepam continue d'assurer la protection de l'installation.
- Défaillance majeure : Sepam passe en position de repli et effectue une tentative de redémarrage pendant laquelle il exécute à nouveau ses autotests. 2 cas sont possibles :
- □ La défaillance interne est encore présente. Il s'agit d'une défaillance permanente. Une intervention sur Sepam est nécessaire. Seule la suppression de la cause de la défaillance, suivie d'une mise hors puis sous tension de Sepam, permet de quitter la position de repli.
- □ La défaillance interne n'est plus présente. Il s'agit d'une défaillance fugitive. Sepam redémarre pour maintenir la protection de l'installation. Sepam est resté en position de repli pendant 5 à 7 s.

Défaillance interne fugitive

Défaillances internes fugitives répétées.

Limitation du nombre de détections de défaillances fugitives

A chaque apparition d'une défaillance interne fugitive, Sepam incrémente un compteur interne. A la cinquième occurrence de la défaillance, Sepam est mis en position de repli. La mise hors tension de Sepam réinitialise le compteur de défaillance. Ce mécanisme permet d'éviter de maintenir en fonctionnement un Sepam soumis à des défaillances fugitives répétées.

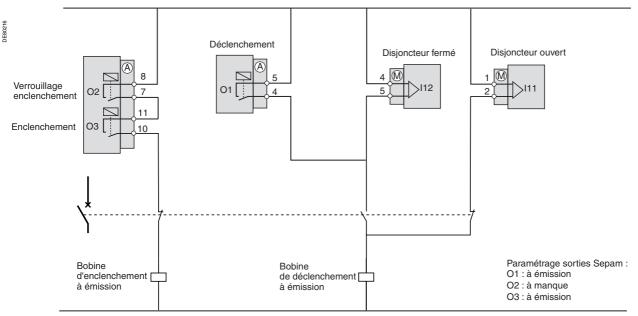
Choix de la commande du déclenchement et exemples de mise en oeuvre

Une analyse de la sûreté de fonctionnement de l'installation complète doit déterminer s'il faut privilégier la disponibilité ou la sécurité de cette installation en cas de position de repli du Sepam. Cette information est utilisée pour déterminer le choix de la commande de déclenchement comme précisé dans le tableau ci-dessous.

A ATTENTION

RISQUE D'INSTALLATION NON PROTEGEE

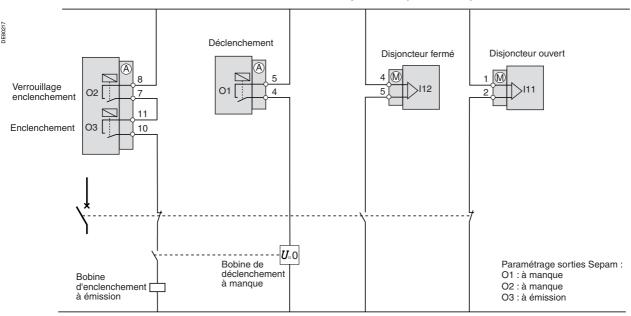
Raccordez systématiquement la sortie chien de garde à un équipement de surveillance lorsque la commande de déclenchement choisie n'entraîne pas le déclenchement de l'installation sur défaillance de Sepam.

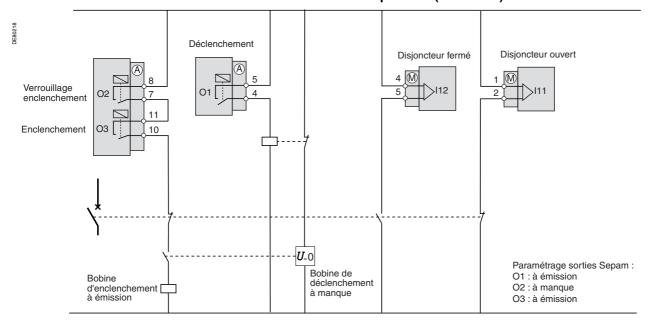

Le non-respect de ces instructions peut entraîner des dommages matériels.

Choix de la commande du déclenchement

Schéma	Commande	Evénement	Déclen- chement	Avantage	Inconvénient
1	Disjoncteur à bobine à émission ou contacteur à accrochage mécanique	Défaillance Sepam ou perte d'alimentation auxiliaire	Non	Disponibilité de l'installation	Installation non protégée jusqu'à intervention curative (1).
2	Disjoncteur à bobine à manque avec sécurité positive	Défaillance Sepam ou perte d'alimentation auxiliaire	Oui	Sécurité de l'installation	Installation non disponible jusqu'à intervention curative
3	Disjoncteur à bobine à manque sans sécurité positive	Défaillance Sepam	Non	Disponibilité de l'installation	Installation non protégée jusqu'à intervention curative ⁽¹⁾
		Perte d'alimentation auxiliaire	Oui	Sécurité de l'installation	Installation non disponible jusqu'à intervention curative

(1) L'utilisation du chien de garde est impérative, voir la notification de danger ci-contre.


Exemple de mise en œuvre avec bobine à émission de tension (schéma 1)


4/21

Fonctions de commande et de surveillance

Exemple de mise en œuvre avec bobine à manque de tension et sécurité positive (schéma 2)

Exemple de mise en œuvre avec bobine à manque de tension sans sécurité positive (schéma 3)

SEPED303006FR Schneider Electric

Utilisation du chien de garde

Le chien de garde a une grande importance dans le système de surveillance car il indique à l'utilisateur le bon fonctionnement des fonctions de protection de Sepam. Lorsque Sepam détecte une défaillance interne, un voyant clignote automatiquement en face avant de Sepam indépendamment du bon raccordement de la sortie chien de garde. Si la sortie chien de garde n'est pas correctement raccordée au système, ce voyant est la seule façon de savoir que Sepam est en défaillance. Par conséquent, il est fortement recommandé de raccorder la sortie chien de garde au niveau le plus élevé de l'installation afin de générer une alarme efficace le cas échéant. Un avertisseur sonore ou un gyrophare peuvent par exemple être utilisés pour prévenir l'opérateur.

Etat de la sortie chien de garde	Pas de défaillance détectée	Défaillance détectée
Sortie chien de garde correctement raccordée au système de commande	Les fonctions de protection sont en état de marche	 Les fonctions de protection sont hors service. Sepam est en position de repli. Le voyant d'alarme de Sepam clignote. La sortie chien de garde active une alarme système. L'opérateur est prévenu qu'il doit intervenir.
Sortie chien de garde non raccordée	Les fonctions de protection sont en état de marche	 Les fonctions de protection sont hors service. Sepam est en position de repli. Le voyant d'alarme de Sepam clignote. L'opérateur n'est pas prévenu d'intervenir sauf s'il contrôle la face avant de Sepam.

Communication Modbus Sommaire

Présentation	5/2
Protocole Modbus	5/3
Mise en œuvre	5/4
Adresse et codage des données	5/6
Horodatation des événements	5/20
Accès aux réglages à distance	5/25
Oscilloperturbographie	5/34

Schneider Electric SEPED303006FR 5/1

Généralités

La **communication Modbus** permet de raccorder les Sepam à un superviseur équipé d'une voie de communication Modbus maître avec une liaison physique de type RS 485, fibre optique ou avec une autre liaison équipée d'un convertisseur adapté.

Le protocole Modbus des Sepam est un sous-ensemble compatible du protocole Modbus RTU (un superviseur maître Modbus peut communiquer avec plusieurs Sepam).

Sepam est toujours une station esclave.

Tous les Sepam peuvent être équipés de l'interface ACE949-2 (2 fils) ou ACE959 (4 fils) pour le raccordement sur un réseau de communication, RS485 et de l'interface ACE937 pour le raccordement à un réseau de communication fibre optique en étoile.

Données accessibles

Les données accessibles dépendent du type de Sepam.

Lecture des mesures

- des courants phases et terre
- des maximètres de courant phase
- des courants de déclenchement
- des ampères coupés cumulés
- des tensions composées, simples et résiduelles
- des puissances actives, réactives et apparentes
- des énergies actives et réactives
- de la fréquence
- des températures
- de l'échauffement
- du nombre de démarrages et de temps de blocage
- du compteur horaire
- courant et durée de démarrage moteur
- durée de fonctionnement restant avant déclenchement par surcharge
- durée d'attente après déclenchement
- temps et nombre de manœuvre
- temps de réarmement disjoncteur.

Lecture des informations de la logique de commande

- une table de 144 télésignalisations (TS) préaffectées (dépend du type de Sepam) permet la lecture de l'état des informations de la logique de commande
- lecture de l'état des 10 entrées tout ou rien.

Télécommandes

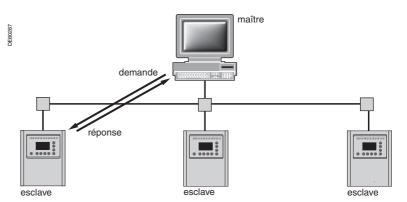
Ecriture de 16 télécommandes (TC) impulsionnelles soit en mode direct, soit en mode SBO (Select Before Operate) via 16 bits de sélection.

Autres fonctions

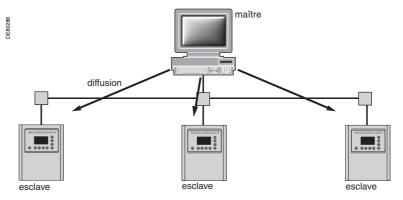
- fonction de lecture de la configuration et de l'identification du Sepam
- fonction d'horodatation des événements (synchronisation par réseau ou externe par l'entrée logique l21), datation des événements à la ms
- fonctions de lecture à distance des réglages du Sepam (télélecture)
- fonction de réglage à distance des protections (téléréglage)
- fonction de commande à distance de la sortie analogique (avec option MSA141)
- fonction de transfert des données d'enregistrement de la fonction d'oscilloperturbographie.

Caractérisation des échanges

Le protocole Modbus permet de lire ou d'écrire un ou plusieurs bits, un ou plusieurs mots, le contenu des compteurs d'événements ou celui des compteurs de diagnostic.


Fonctions Modbus supportées

Le protocole Modbus de Sepam supporte 11 fonctions :


- fonction 1 : lecture de n bits de sortie ou internes
- fonction 2 : lecture des n bits d'entrée
- fonction 3 : lecture de n mots de sortie ou internes
- fonction 4 : lecture de n mots d'entrée
- fonction 5 : écriture de 1 bit
- fonction 6 : écriture de 1 mot
- fonction 7 : lecture rapide de 8 bits
- fonction 8 : lecture des compteurs de diagnostic
- fonction 11 : lecture des compteurs d'événements Modbus
- fonction 15 : écriture de n bits
- fonction 16 : écriture de n mots.

Les codes d'exception supportés sont :

- 1 : code fonction inconnu
- 2 : adresse incorrecte
- 3 : donnée incorrecte
- 7 : non acquittement (télélecture et téléréglage).

Les échanges se font à l'initiative du maître et comportent une demande du maître et une réponse de l'esclave (Sepam). Les demandes du maître sont soit adressées à un Sepam donné identifié par son numéro dans le premier octet de la trame de demande, soit adressées à tous les Sepam (diffusion).

Les commandes de diffusion sont obligatoirement des commandes d'écriture. Il n'y a pas de réponse émise par les Sepam.

La connaissance détaillée du protocole n'est indispensable que si l'on utilise comme maître un calculateur pour lequel il faut réaliser la programmation correspondante. Tout échange Modbus comporte 2 messages : une demande du maître et une réponse de Sepam.

Toutes les trames échangées ont la même structure. Chaque message ou trame contient 4 types d'informations :

numéro	code	zones	zone de contrôle
d'esclave	fonction	de données	CRC 16

- le numéro de l'esclave (1 octet) : il spécifie le Sepam destinataire (0 à FFh). S'il est égal à zéro, la demande concerne tous les esclaves (diffusion) et il n'y a pas de message de réponse
- le code fonction (1 octet) : Il permet de sélectionner une commande (lecture, écriture, bit, mot) et de vérifier si la réponse est correcte
- les zones données (n octets) : il contient les paramètres liés à la fonction : adresse bit, adresse mot, valeur de bit, valeur de mot, nombre de bits, nombre de mots
- la zone contrôle (2 octets) : il est utilisé pour détecter les erreurs de transmission.

Synchronisation des échanges

Tout caractère reçu après un silence supérieur à 3 caractères est considéré comme un début de trame. Un silence sur la ligne au minimum égal à 3 caractères doit être respecté entre deux trames.

Exemple : à 9600 bauds, ce temps est égal approximativement à 3 millisecondes.

Type de transmission	Série asynchrone
Protocole	Modbus esclave (profil Jbus)
Vitesse	4800, 9600, 19200, 38400 bauds.
Format des données	1 start, 8 bits, sans parité, 1 stop
	1 start, 8 bits, parité paire, 1 stop
	1 start, 8 bits, parité impaire, 1 stop
Temps de retournement	Inférieur à 15 ms
Nombre maximum de Sepam sur un réseau Modbus	25
Interface électrique RS 485	ACE949-2, conforme au standard EIA RS 485 différentiel 2 fils
	ACE959, conforme au standard EIA RS 485 différentiel 4 fils
Alimentation des interfaces électriques	Externe, par alimentation auxiliaire 12 V CC ou 24 V CC
Type de raccordement	Bornes à vis et étriers de serrage pour reprise du blindage
Longueur maximale du réseau RS 485	Avec interfaces téléalimentées en 12 V CC
(longueurs multipliées par 3 avec câble	320 m avec 5 Sepam
FILECA, avec un maximum de 1300m)	180 m avec 10 Sepam
	160 m avec 20 Sepam
	125 m avec 25 Sepam
	Avec interfaces téléalimentées en 24 V CC
	1000 m avec 5 Sepam
	750 m avec 10 Sepam
	450 m avec 20 Sepam
	375 m avec 25 Sepam

Interface fibre optique, se référer au chapitre "raccordement des interfaces ACE937" page 6/29.

Temps de retournement

Le temps de retournement (Tr) du coupleur de communication est inférieur à 15 ms, silence de 3 caractères inclus (3 ms environ à 9600 bauds).

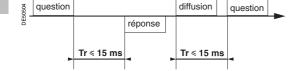
Ce temps est donné avec les paramètres suivants :

- 9600 bauds
- format 8 bits, parité impaire, 1 bit de stop.

Réglage des paramètres de communication

La mise en service de Sepam équipé de communication nécessite le réglage préalable de 4 paramètres sauvegardés sur coupure d'alimentation.

Paramètres de communication	Réglage usine
Vitesse de transmission, réglable de 4800 à 38400 bauds	9600 bauds
N° d'esclave attribué au Sepam réglable de 1 à 255	N° 001
Parité : paire, impaire, sans parité	Parité paire
Mode télécommande direct / confirmé	Direct


L'affectation du numéro d'esclave Modbus doit être réalisée avant la connexion de Sepam au réseau de communication (tous les Sepam ont un numéro d'esclave paramétré à 1 en usine).

Régler les paramètres de communication avant de connecter le Sepam au réseau de communication.

Une modification des paramètres de communication en fonctionnement normal ne perturbe pas Sepam. Après une mise sous tension ou un changement des paramètres de communication par le SFT2848, la première trame reçue par Sepam est ignorée.

Voyant "activité ligne" :

Le voyant de l'accessoire ACE949-2 ou ACE959 est activé par les variations du signal électrique sur le réseau RS 485 (signaux optiques pour l'ACE937). Lorsque le superviseur communique avec Sepam (en émission ou en réception), ce voyant clignote.

Test de la liaison

Mise en œuvre

- après câblage, vérifier l'indication donnée par le voyant "activité ligne"
- réaliser des cycles de lecture et écriture en utilisant la zone de test et le mode écho Modbus
- utiliser le logiciel SFT2819 pour lire et écrire la zone test.

Les trames Modbus ci-contre, émises ou reçues par un superviseur sont données à des fins de test lors de la mise en œuvre de la communication.

Le CRC reçu par Sepam est recalculé ce qui permet de tester le calcul du CRC émis par le maître :

- si le CRC reçu est correct, alors le Sepam répond
- si le CRC reçu est incorrect, alors Sepam ne répond pas.

Zone de test Lecture Emission 01 03 0C00 0002 (C75B) crc, Réception 01 03 04 0000 0000 (FA33) crc. **Ecriture** 01 10 0C00 0001 02 1234 (6727) crc, **Emission** 01 10 0C00 0001 (0299) crc. Réception Lecture 01 03 0C00 0001 (875A) crc. Emission Réception 01 03 02 1234 (B533) crc. Mode echo Modbus (voir la fonction 8 du protocole Modbus) Emission 01 08 0000 1234 (ED7C) crc, Réception 01 08 0000 1234 (ED7C) crc.

Compteurs de diagnostic

Les compteurs de diagnostic gérés par Sepam sont :

- CPT1, premier mot : nombre de trames reçues correctes, que l'esclave soit concerné ou non
- CPT2, deuxième mot : nombre de trames reçues avec erreur de CRC, ou trames reçues supérieures à 255 octets et non interprétées, ou trames reçues avec au moins un caractère avant une erreur de parité, "overrun", "framing", "break" sur la ligne. Une vitesse erronée provoque l'incrémentation de CPT2
- CPT3, troisième mot : nombre de réponses d'exception générées (même si non émise, du fait d'une demande reçue en diffusion)
- CPT4, quatrième mot : nombre de trames spécifiquement adressées à la station (hors diffusion)
- CPT5, cinquième mot : nombre de trames en diffusion reçues sans erreur
- CPT6, sixième mot : non significatif
- CPT7, septième mot : nombre de réponses "Sepam non prêt" générées
- CPT8, huitième mot : nombre de trames reçues avec au moins un caractère ayant une erreur de parité, "overrun", "framing", "break" sur la ligne
- CPT9, neuvième mot : nombre de demandes reçues correctes et correctement exécutées.

Les compteurs CPT2 et CPT9 peuvent être visualisés sur SFT2848 (écran "Diagnostic Sepam").

Les compteurs sont accessibles par la fonction de lecture dédiées (fonction 11 du protocole Modbus).

Lorsqu'un compteur a sa valeur égale à FFFFh (65535) il passe automatiquement à 0000h (0). Après une **coupure de l'alimentation auxiliaire** les compteurs de diagnostic sont initialisés à zéro.

Anomalies de fonctionnement

- il est conseillé de connecter les Sepam un par un sur le réseau RS 485
- la visualisation des compteurs de diagnostic CPT2 et CPT9 sur SFT2848 (écran "Diagnostic Sepam") permet de contrôler les échanges Modbus
- vérifier le numéro d'esclave, la vitesse, le format sur le SFT2848 ou l'IHM du Sepam.

S'assurer que le superviseur envoie des trames vers le Sepam concerné en vérifiant l'activité au niveau du convertisseur RS 232 - RS 485 s'il y en a un et au niveau du module ACE949-2 ou ACE959.

- vérifier le câblage sur chaque module ACE949-2 ou ACE959
- vérifier le serrage des bornes à vis sur chaque module
- vérifier la connexion du câble CCA612 reliant le module ACE949-2 ou ACE959 à l'unité Sepam (repère ©)
- vérifier la polarisation qui doit être unique et l'adaptation qui doit être placée aux extrémités du réseau RS 485
- vérifier que le câble utilisé est celui préconisé
- vérifier que le convertisseur ACE909-2 ou ACE919 utilisé est correctement connecté et paramétré.

Présentation

Les données homogènes du point de vue des applications de contrôle commande sont regroupées dans les zones d'adresses contiguës :

	Adresse	Adresse	Fonctions Modbus
	de début	de fin	autorisées
	en hexadécimal		
Zone de synchronisation	0002	0005	3, 16
Zone d'identification	0006	000F	3
Première table d'événements			
Mot d'échange	0040	0040	3, 6, 16
Evénements (1 à 4)	0041	0060	3
Deuxième table d'événements			
Mot d'échange	0070	0070	3, 6, 16
Evénements (1 à 4)	0071	0090	3
Données			
Télécommandes	00F0	00F0	3, 4, 6, 16
			1, 2, 5, 15 ^(*)
Confirmation télécommande	00F1	00F1	3, 4, 6, 16
			1, 2, 5, 15 ^(*)
Etats	0100	0112	3, 4
			1, 2 ^(*)
Mesures	0113	0158	3, 4
Diagnostic	0159	0185	3, 4
Contexte déclenchement	0250	0275	3, 4
Diagnostic appareillage	0290	02A5	3, 4
Application	02CC	02FE	3
Zone test	0C00	0C0F	3, 4, 6, 16
			1, 2, 5, 15
Réglages			
Lecture 1 ^{re} zone	1E00	1E7C	3
Demande lecture 1 ^{re} zone	1E80	1E80	3, 6, 16
Téléréglages 1 ^{re} zone	1F00	1F7C	3, 6
Lecture 2 ^e zone	2000	207C	3
Demande de lecture 2 ^e zone	2080	2080	3, 6, 16
Téléréglages 2 ^e zone	2100	217C	3, 16
Oscilloperturbographie			
Choix fonction transfert	2200	2203	3, 16
Zone d'identification	2204	2271	3
Mot d'échange OPG	2300	2300	3, 6, 16
Données OPG	2301	237C	3
A noter que les zones non adre	essables peuvent	soit répondre	par un message

A noter que les zones non adressables peuvent soit répondre par un message d'exception soit fournir des données non significatives.

L'adresse du bit i $(0 \le i \le F)$ du mot d'adresse J est alors $(J \times 16) + i$.

Exemple: 0C00 bit 0 = C000 0C00 bit 7 = C007.

 $^{(\}mbox{\ensuremath{^{^{\prime}}}})$ ces zones sont accessibles en mode mots ou en mode bits.

Zone de synchronisation

La zone synchronisation est une table qui contient la date et l'heure absolue pour la fonction horodatation des événements. L'écriture du message horaire doit être réalisée en un seul bloc de 4 mots avec la fonction 16 écriture mot.

La lecture peut se réaliser mot par mot ou par groupe de mots avec la fonction 3.

Zone synchronisation	Adresse mot	Accès	Fonction Modbus
			autorisée
Temps binaire (année)	0002	Lecture/écriture	3, 16
Temps binaire (mois + jours)	0003	Lecture	3
Temps binaire (heures + minutes)	0004	Lecture	3
Temps binaire (millisecondes)	0005	Lecture	3

Voir chapitre "Horodatation des événements" pour le format des données.

Zone d'identification

La zone d'identification contient des informations de nature système relative à l'identification de l'équipement Sepam.

Certaines informations de la zone identification se trouvent aussi dans la zone application à l'adresse 02CCh.

Zone identification	Adresse mot	Accès	Fonction Modbus autorisée	Format	Valeur
Identification constructeur	0006	L	3		0100
Identification équipement	0007	L	3		0
Repère + type équipement	0008	L	3		ld. 02E2
Version de la com.	0009	L	3	Non géré	0
Version application	000A/B	L	3	(1)	
Mot de contrôle Sepam	000C	L	3		ldem 0100
Mot d'extension	000D	L	3	Non géré	0
Commande	000E	L/E	3/16	Non géré	Init. à 0
Adresse extension zone	000F	L	3		02CC

⁽¹⁾ Poids fort 2^e mot : indice majeur Poids faible 2^e mot : indice mineur.

Première zone événements

La zone des événements est une table qui contient au maximum 4 événements horodatés.

La lecture doit être réalisée en un seul bloc de 33 mots avec la fonction 3. Le mot d'échange peut être écrit avec les fonctions 6 ou 16 et lu individuellement par la fonction 3.

Zone événements 1	Adresse mot	Accès	Fonction Modbus
			autorisée
Mot d'échange	0040	Lecture/écriture	3, 6, 16
Evénement n°1	0041-0048	Lecture	3
Evénement n°2	0049-0050	Lecture	3
Evénement n°3	0051-0058	Lecture	3
Evénement n°4	0059-0060	Lecture	3

Voir chapitre "Horodatation des événements" pour le format des données.

Deuxième zone événements

La zone des événements est une table qui contient au maximum 4 événements horodatés.

La lecture doit être réalisée en un seul bloc de 33 mots avec la fonction 3. Le mot d'échange peut être écrit avec les fonctions 6 ou 16 et lu individuellement par la fonction 3.

Adresse mot	Accès	Fonction Modbus
		autorisée
0070	Lecture/écriture	3, 6, 16
0071-0078	Lecture	3
0079-0080	Lecture	3
0081-0088	Lecture	3
0089-0090	Lecture	3
	0070 0071-0078 0079-0080 0081-0088	0070 Lecture/écriture 0071-0078 Lecture 0079-0080 Lecture 0081-0088 Lecture

Voir chapitre "Horodatation des événements" pour le format des données.

Zone télécommandes

La zone télécommandes est une table qui contient les TC préaffectées. Cette zone peut être lue ou écrite par les fonctions mot ou les fonctions bit (voir chapitre "télécommandes").

Télécommandes	Adresse mot	Adresse bit	Accès	Fonction	Format
TC1-TC16	00F0	0F00	L/E	3/4/6/16	В
				1/2/5/15	
STC1-STC16	00F1	0F10	L/E	3/4/6/16	В
				1/2/5/15	

Zone d'états

la **zone d'états** est une table qui contient le mot de contrôle Sepam, les télésignalisations (TS) préaffectées, les entrées logiques, les bits d'équations logiques, les sorties logiques, les voyants et le mot de commande de la sortie analogique.

L'affectation des TS est détaillée en page 5/16.

Etats	Adresse mot	Adresse bit	Accès	Fonction Modbus autorisée	Format
Mot de contrôle Sepam	0100	1000	L	3/4 ou 1, 2, 7	Χ
TS1-TS16	0101	1010	L	3/4 ou 1, 2	В
TS17-TS32	0102	1020	L	3/4 ou 1, 2	В
TS33-TS48	0103	1030	L	3/4 ou 1, 2	В
TS49-TS64 (réservés)	0104	1040	L	3/4 ou 1, 2	В
TS65-TS80	0105	1050	L	3/4 ou 1, 2	В
TS81-TS96	0106	1060	L	3/4 ou 1, 2	В
TS97-TS112	0107	1070	L	3/4 ou 1, 2	В
TS113-TS128	0108	1080	L	3/4 ou 1, 2	В
TS129-TS144	0109	1090	L	3/4 ou 1, 2	В
Réservé	010A	10A0	_	_	_
Entrées logiques	010B	10B0	L	3/4 ou 1, 2	В
Bits d'équations logiques	010C	10C0	L	3/4 ou 1, 2	В
Sorties logiques	010D	10D0	L	3/4 ou 1, 2	В
Voyants	010E	10E0	L	3/4 ou 1, 2	В
Sortie analogique	010F	10F0	L/E	3, 6, 16	16S

Mot d'adresse 010B : état des entrées logiques (adresse bit 10B0 à 10BF)

Bit	F	E	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
Entrée	-	-	-	-	-	-	126	125	124	123	122	121	114	I13	l12	111

Mot d'adresse 010C : état des bits d'équations logiques (adresse bit 10C0 à 10CF)

Bit	7	6	5	4	3	2	1	0
Equation	V8	V7	V6	V5	V4	V3	V2	V1
	•		,	•	•		,	
Bit	F	E	D	С	В	Α	9	8
E-marking.			V EL 40DE0	V INILIIDOLOGE	V OLOCEOR	V TOLDOD	140	1/0

Mot d'adresse 010D : état des sorties logiques (adresse bit 10D0 à 10DF)

Bit	F	E	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
Sortie	-	-	-	-	-	-	-	-	014	O13	012	011	04	O3	02	01

Mot d'adresse 010E : état des voyants (adresse bit 10E0 à 10EF)

Bit	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
Voyant	-	-	-	i	-	-	LD	L9	L8	L7	L6	L5	L4	L3	L2	L1

LD: Voyant rouge Sepam indisponible.

5/9

Zone de mesures (x 1)

Communication Modbus

ourant phase I1 (x 1) ourant phase I2 (x 1) ourant phase I3 (x 1) ourant résiduel I0 Somme (x 1) ourant résiduel mesuré (x 1) ourant moyen phase Im1 (x 1) ourant moyen phase Im2 (x 1)	0113 0114 0115 0116 0117 0118	L L L	autorisée 3, 4 3, 4 3, 4 3, 4	16NS 16NS 16NS	0,1 A 0,1 A
ourant phase I2 (x 1) ourant phase I3 (x 1) ourant résiduel I0 Somme (x 1) ourant résiduel mesuré (x 1) ourant moyen phase Im1 (x 1)	0114 0115 0116 0117	L L	3, 4 3, 4	16NS	0,1 A
ourant phase I3 (x 1) ourant résiduel I0 Somme (x 1) ourant résiduel mesuré (x 1) ourant moyen phase Im1 (x 1)	0115 0116 0117	L	3, 4		· · · · · · · · · · · · · · · · · · ·
ourant résiduel I0 Somme (x 1) ourant résiduel mesuré (x 1) ourant moyen phase Im1 (x 1)	0116 0117		·	16NS	
ourant résiduel mesuré (x 1) ourant moyen phase lm1 (x 1)	0117	L L	3. 4		0,1 A
ourant moyen phase Im1 (x 1)		L	٥, .	16NS	0,1 A
, , ,	0118		3, 4	16NS	0,1 A
ourant moven phase Im2 (v. 1)		L	3, 4	16NS	0,1 A
ourant moyen phase miz (x 1)	0119	L	3, 4	16NS	0,1 A
ourant moyen phase Im3 (x 1)	011A	L	3, 4	16NS	0,1 A
aximètre courant phase IM1 (x 1)	011B	L	3, 4	16NS	0,1 A
aximètre courant phase IM2 (x 1)	011C	L	3, 4	16NS	0,1 A
aximètre courant phase IM3 (x 1)	011D	L	3, 4	16NS	0,1 A
ension composée U21 (x 1)	011E	L	3, 4	16NS	1 V
ension composée U32 (x 1)	011F	L	3, 4	16NS	1 V
ension composée U13 (x 1)	0120	L	3, 4	16NS	1 V
ension simple V1 (x 1)	0121	L	3, 4	16NS	1 V
ension simple V2 (x 1)	0122	L	3, 4	16NS	1 V
ension simple V3 (x 1)	0123	L	3, 4	16NS	1 V
ension résiduelle V0 (x 1)	0124	L	3, 4	16NS	1 V
ension directe Vd (x 1)	0125	L	3, 4	16NS	1 V
ension inverse Vi (x 1)	0126	L	3, 4	16NS	1 V
réquence	0127	L	3, 4	16NS	0,01 Hz
uissance active P (x 1)	0128	L	3, 4	16S	1 kW
uissance réactive Q (x 1)	0129	L	3, 4	16S	1 kvar
uissance apparente S (x 1)	012A	L,	3, 4	16S	1 kVA
aximètre puissance active Pm (x 1)	012B	L,	3, 4	16S	1 kW
aximètre puissance réactive Qm (x 1)	012C	L	3, 4	16S	1 kvar
acteur de puissance cos φ (x 100)	012D	L	3, 4	16S	0,01
nergie active positive Ea+ (x 1)	012E/012F	L	3, 4	2 x 16NS	100 kW.h
nergie active négative Ea- (x 1)	0130/0131	L	3, 4	2 x 16NS	100 kW.h
nergie réactive positive Er+ (x 1)	0132/0133	L	3, 4	2 x 16NS	100 kvar.h
nergie réactive négative Er- (x 1)	0134/0135	L	3, 4	2 x 16NS	100 kvar.h

SEPED303006FR Schneider Schneider

Adresse et codage des données

	п
	v

		Zone de m	esures (x 10)		
Mesures	Adresse mot	Accès	Fonction Modbus autorisée	Format	Unité
Courant phase I1 (x 10)	0136	L	3, 4	16NS	1 A
Courant phase I2 (x 10)	0137	L	3, 4	16NS	1 A
Courant phase I3 (x 10)	0138	L	3, 4	16NS	1 A
Courant résiduel I0 Somme (x 10)	0139	L	3, 4	16NS	1 A
Courant résiduel I0 mesuré (x 10)	013A	L	3, 4	16NS	1 A
Courant moyen phase Im1 (x 10)	013B	L	3, 4	16NS	1 A
Courant moyen phase Im2 (x 10)	013C	L	3, 4	16NS	1 A
Courant moyen phase Im3 (x 10)	013D	L	3, 4	16NS	1 A
Maximètre courant phase IM1 (x 10)	013E	L	3, 4	16NS	1 A
Maximètre courant phase IM2 (x 10)	013F	L	3, 4	16NS	1 A
Maximètre courant phase IM3 (x 10)	0140	L	3, 4	16NS	1 A
Tension composée U21 (x 10)	0141	L	3, 4	16NS	10 V
Tension composée U32 (x 10)	0142	L	3, 4	16NS	10 V
Tension composée U13 (x 10)	0143	L	3, 4	16NS	10 V
Tension simple V1 (x 10)	0144	L	3, 4	16NS	10 V
Tension simple V2 (x 10)	0145	L	3, 4	16NS	10 V
Tension simple V3 (x 10)	0146	L	3, 4	16NS	10 V
Tension résiduelle V0 (x 10)	0147	L	3, 4	16NS	10 V
Tension directe Vd (x 10)	0148	L	3, 4	16NS	10 V
Tension inverse Vi (x 10)	0149	L	3, 4	16NS	10 V
Fréquence	014A	L	3, 4	16NS	0,01 Hz
Puissance active P (x 100)	014B	L	3, 4	16S	100 kW
Puissance réactive Q (x 100)	014C	L	3, 4	16S	100 kvar
Puissance apparente S (x 100)	014D	L	3, 4	16S	100 kVA
Maximètre puissance active Pm (x 100)	014E	L	3, 4	16S	100 kW
Maximètre puissance réactive Qm (x 100)	014F	L	3, 4	16S	100 kvar
Facteur de puissance cos φ (x 100)	0150	L	3, 4	16S	0,01
Energie active positive Ea+ (x 1)	0151/0152	L	3, 4	32NS	100 kW.h
Energie active négative Ea- (x 1)	0153/0154	L	3, 4	32NS	100 kW.h
Energie réactive positive Er+ (x 1)	0155/0156	L	3, 4	32NS	100 kvar.h

3, 4

32NS

100 kvar.h

Energie réactive négative Er- (x 1)

0157/0158

5/11

Zone de diagnostic

Diagnostic	Adresse mot	Accès	Fonction Modbus autorisée	Format	Unité
Réserve	0159	-	-	-	-
Dernier courant déclenchement Itrip1	015A	L	3, 4	16NS	10 A
Dernier courant déclenchement Itrip2	015B	L	3, 4	16NS	10 A
Dernier courant déclenchement Itrip3	015C	L	3, 4	16NS	10 A
Dernier courant déclenchement Itrip0	015D	L	3, 4	16NS	1 A
Cumul des ampères coupés	015E	L	3, 4	16NS	1(kA) ²
Nombre de manœuvres	015F	L	3, 4	16NS	1
Temps de manœuvre	0160	L	3, 4	16NS	1 ms
Temps de réarmement	0161	L	3, 4	16NS	0,1 s
Compteur horaire / temps fonctionnement	0162	L	3, 4	16NS	1 h
Réserve	0163	-	-	-	-
Echauffement	0164	L	3, 4	16NS	%
Temps avant déclenchement	0165	L	3, 4	16NS	1 min
Temps avant enclenchement	0166	L	3, 4	16NS	1 min
Taux de déséquilibre	0167	L	3, 4	16NS	% lb
Durée démarrage / surcharge	0168	L	3, 4	16NS	1 { s
Courant démarrage / surcharge	0169	L	3, 4	16NS	1 A
Durée d'interdiction de démarrage	016A	L	3, 4	16NS	1 min
Nombre démarrages autorisés	016B	L	3, 4	16NS	1
Températures 1 à 16	016C/017B	L	3, 4	16S	1 °C
Energie externe active positive Ea+ ext	017C/017D	L	3, 4	32NS	100 kW.h
Energie externe active négative Ea- ext	017E/017F	L	3, 4	32NS	100 kW.h
Energie externe réactive positive Er+ ext	0180/0181	L	3, 4	32NS	100 kvar.h
Energie externe réactive négative Er- ext	0182/0183	L	3, 4	32NS	100 kvar.h
T2 auto-apprise (49 RMS) régime thermique 1	0184	L	3, 4	16NS	mn
T2 auto-apprise (49 RMS) régime thermique 2	0185	L	3, 4	16NS	mn

Zone déphasages

Déphasages	Adresse mot	Accès	Fonction Modbus autorisée	Format	Unité
Déphasage φ0Σ	01A0/01A1	L	3, 4	32NS	1°
Déphasage φ0	01A2/01A3	L	3, 4	32NS	1°
Déphasage φ1	01A4/01A5	L	3, 4	32NS	1°
Déphasage φ2	01A6/01A7	L	3, 4	32NS	1°
Déphasage φ3	01A8/01A9	L	3, 4	32NS	1°

Schneider Beleetric SEPED303006FR

Zone de contexte déclenchement

Dernier contexte de déclenchement	Adresse mot Modbus	Accès	Fonction Modbus autorisée	Format	Unité
Horodatage du contexte (voir chapitre "horodatation des événements")	0250/0253	L	3	CEI	-
Courant Itrip1	0254	L	3, 4	32NS	0,1 A
Courant Itrip2	0256	L	3, 4	32NS	0,1 A
Courant Itrip3	0258	L	3, 4	32NS	0,1 A
Courant résiduel I0 Somme	025A	L	3, 4	32NS	0,1 A
Courant résiduel I0 mesuré	025C	L	3, 4	32NS	0,1 A
Tension composée U21	025E	L	3, 4	32NS	1 V
Tension composée U32	0260	L	3, 4	32NS	1 V
Tension composée U13	0262	L	3, 4	32NS	1 V
Tension simple V1	0264	L	3, 4	32NS	1 V
Tension simple V2	0266	L	3, 4	32NS	1 V
Tension simple V3	0268	L	3, 4	32NS	1 V
Tension résiduelle V0	026A	L	3, 4	32NS	1 V
Tension directe Vd	026C	L	3, 4	32NS	1 V
Tension inverse Vi	026E	L	3, 4	32NS	1 V
Fréquence	0270	L	3, 4	32NS	0,01 Hz
Puissance active P	0272	L	3, 4	32S	1 kW
Puissance réactive Q	0274	L	3, 4	32S	1 kvar

Zone de diagnostic appareillage

Diagnostic appareillage	Adresse mot	Accès	Fonction Modbus autorisée	Format	Unité
Valeur initiale du cumul des ampères	0290	L	3, 4	32NS	1 kA ²
Ampères coupés cumulés (0 < I < 2 In)	0292	L	3, 4	32NS	1 kA ²
Ampères coupés cumulés (2 ln < l < 5 ln)	0294	L	3, 4	32NS	1 kA ²
Ampères coupés cumulés (5 ln < l < 10 ln	0296	L	3, 4	32NS	1 kA ²
Ampères coupés cumulés (10 ln < l < 40 ln	0298	L	3, 4	32NS	1 kA ²
Ampères coupés cumulés (I > 40 In)	029A	L	3, 4	32NS	1 kA ²
Ampères coupés cumulés	029C	L	3, 4	32NS	1 kA ²
Nombre de déclenchements	029E	L	3, 4	32NS	1
Nombre de manœuvres (si MES114)	02A0	L	3, 4	32NS	1
Temps de manœuvre (si MES114)	02A2	L	3, 4	32NS	1 ms
Temps de réarmement (si MES114)	02A4	L	3, 4	32NS	1 ms

Zone de configuration et application

Configuration et application	Adresse mot	Accès	Fonction Modbus autorisée	Format	Unité
Type d'application (1)	02CC	L	3	-	-
Nom de l'application (E11, E12, E13)	02CD/02D2	L	3	ASCII 12c	-
Repère du Sepam	02D3/02DC	L	3	ASCII 20c	-
Version application Sepam	02DD/02DF	L	3	ASCII 6c	-
Adresse Modbus (n° esclave) pour Niveau 2	02E0	L	3	-	-
Adresse Modbus (n° esclave) pour RHM	02E1	L	3	-	-
Repère + type équipement (3)	02E2	L	3	-	-
Type de coupleur (0 = Modbus)	02E3	L	3	-	-
Version de la communication	02E4	L	3	NG	-
Version module MET148-2, n° 1	02E5/02E7	L	3	ASCII 6c	-
Version module MET148-2, n° 2	02E8/02EA	L	3	ASCII 6c	-
Version module MSA141	02EB/02ED	L	3	ASCII 6c	-
Nom de la langue	02F1/02FA	L	3	ASCII 20c	-
N° de version de langue personnalisée (2)	02FB	L	3	-	-
N° de version de langue anglaise (2)	02FC	L	3	-	-
N° de Version de Boot (2)	02FD	L	3	-	-
Mot d'Extension (4)	02FE	L	3	-	-

(1) 40 : non configuré 48 : E13 52 : E15 55 : E32 49 : E11 50 : E12 53 : E22 56 : E33.

poids faible : configuration matérielle.

Bit 7		6	5	4	3	2	1	0
Option M	D/MX	Extension	MET148-2/2	DSM303	MSA141	MET148-2/1	MES114	MES108
Mod.MD 1		Z	X	0	x	Х	у	у

x = 1 si option présente

(4) Bit 0 : = 1 si MES114E ou MES114F paramétré en mode Vac.

Précision

La précision des mesures est fonction du poids de l'unité ; elle est égale à la valeur du point divisé par 2.

Exemples :		
I1	Unité = 1 A	Précision = 1/2 = 0,5 A
U21	Unité = 10 V	Précision = 10/2 = 5 V

Schneider Electric

⁽²⁾ Poids fort : indice majeur, poids faible : indice mineur. (3) Mot 2E2 : poids fort : 11 h (Sepam)

y = 1 si option présente, options exclusives z = 1 si extension dans mot $2FE^{(4)}$.

Zone de test

La zone de test est une zone de 16 mots accessibles par la communication par toutes les fonctions tant en lecture qu'en écriture pour faciliter les tests de la communication lors de la mise en service ou pour tester la liaison.

Zone test	Adresse mot	Adresse bit	Accès	Fonction Modbus autorisée	Format	
Test	0C00	C000-C00F	Lecture/écriture	1, 2, 3, 4, 5, 6, 15, 16	Sans	Initialisé à 0
	0C0F	C0F0-C0FF	Lecture/écriture	1. 2. 3. 4. 5. 6. 15. 16	Sans	Initialisé à 0

Zone réglages

La zone réglages est une table d'échange qui permet la lecture et le réglage des protections. 2 zones de réglage sont disponibles pour fonctionner avec 2 maîtres.

Réglages	Adresse mot 1ère zone	Adresse mot 2e zone	Accès	Fonction Modbus autorisée
Buffer lecture réglages	1E00/1E7C	2000/207C	L	3
Demande lecture des réglages	1E80	2080	L/E	3/6/16
Buffer demande de téléréglage	1F00/1F7C	2100/217C	L/E	3/16

Voir chapitre "Réglages".

Zone oscilloperturbographie

La zone oscilloperturbographie est une table d'échange qui permet la lecture des enregistrements. 2 zones sont disponibles pour fonctionner avec 2 maîtres.

Oscilloperturbographie	Adresse mot 1ère zone	Adresse mot 2e zone	Accès	Fonction Modbus autorisée
Choix de la fonction de transfert	2200/2203	2400/2403	L/E	3/16
Zone d'identification	2204/2228	2404/2428	L	3
Mot d'échange OPG	2300	2500	L/E	3/6/16
Données OPG	2301/237C	2501/257C	L	3

Voir chapitre "Oscilloperturbographie".

5/15

Codage des données

Pour tous les formats

Si une mesure dépasse la valeur maximale autorisée pour le format concerné, la valeur lue pour cette mesure sera la valeur maximale autorisée par ce format.

Format 16 NS

L'information est codée sur un mot de 16 bits, en binaire en valeur absolue (non signé). Le bit 0 (b0) est le bit de poids faible du mot.

Format 16 S mesures avec signe (températures,...)

L'information est codée sur un mot de 16 bits en complément à 2.

Exemple :

- 0001 représente +1
- FFFF représente -1.

Format 32 NS

L'information est codée sur deux mots de 16 bits, en binaire non signé. Le premier mot est le mot du poids fort.

Format 32 S

Information signée en complément à 2 sur 2 mots. Le premier mot est le mot poids fort :

- 0000, 0001 représente +1
- FFFF, FFFF représente -1.

Format B: Ix

Bit de rang i dans le mot, avec i compris entre 0 et F.

Exemples		F	E	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
Entrée	Adresse mot 010B																
TOR								26	25	24	23	22	21	14	13	12	11
	Adresse bit 10BX																
TS	Adresse 0101																<u> </u>
1 à 16		16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
	Adresse bit 101x																
TS	Adresse mot 0104																
49 à 64		64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
	Adresse bit 104x																
TC	Adresse mot 01F0																
1 à 16		16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
	Adresse bit 1F0x																
STC	Adresse mot 00F1																
1 à 16		16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
	Adresse bit 0F1x																

Format X : mot contrôle Sepam

Ce format s'applique uniquement au mot contrôle Sepam accessible à l'adresse mot 100h. Ce mot contient diverses informations relatives :

- au mode de fonctionnement de Sepam
- à l'horodatation des événements.

Chaque information contenue dans le mot contrôle Sepam est accessible bit à bit, de l'adresse **1000** pour le bit 0 à **100F** pour le bit 15.

- bit 15 : présence événement dans 1^{re} zone d'événements
- bit 14 : Sepam en "perte info" 1^{re} zone d'événements
- bit 13 : Sepam non synchrone
- bit 12 : Sepam pas à l'heure
- bit 11 : présence d'événements dans 2e zone d'événements
- bit 10 : Sepam en "perte d'info" 2e zone d'événements
- bit 9 : Sepam en défaut majeur
- bit 8 : Sepam en défaut partiel
- bit 7 : jeu de réglages A en service
- bit 6 : jeu de réglages B en service
- bit 1 : Sepam en mode réglage local
- autres bits en réserve (valeur indéterminée).

Les changements d'états des bits 1, 6, 7, 8, 10, 12, 13 et 14 de ce mot provoquent l'émission d'un événement horodaté.

SEPED303006FR Schneider Schneider

5

Utilisation des télésignalisations

Sepam met à disposition de la communication 144 TS.

Les télésignalisations (TS) sont préaffectées à des fonctions de protection ou de commandes qui dépendent du modèle de Sepam.

Les TS peuvent être lues par les fonctions bit ou mot. Chaque transition d'une TS est horodatée et stockée dans la pile des événements (voir chapitre horodatation).

Mot d'adresse 101 : TS001 à TS016 (adresse bit 1010 à 101F)

TS	Utilisation	E11	E12	E13	E14	E15	E22	E23	E32	E33
1	Protection 50/51 exemplaire 1		•					•	•	•
2	Protection 50/51 exemplaire 2									
3	Protection 50/51 exemplaire 3		•							•
4	Protection 50/51 exemplaire 4									•
5	Protection 50N/51N exemplaire 1									
6	Protection 50N/51N exemplaire 2									
7	Protection 50N/51N exemplaire 3									
8	Protection 50N/51N exemplaire 4									
9	Protection 49 RMS seuil alarme									
10	Protection 49 RMS seuil déclenchement									
11	Protection 37 (min I)									
12	Protection 46 (max linv) exemplaire 1									
13	Protection 46 (max linv) exemplaire 2									
14	Protection 48/51LR (blocage rotor)									
15	Protection 48/51LR (blocage rotor au démarrage)									
16	Protection 48/51LR (démarrage trop long)									

Mot d'adresse 102 : TS017 à TS032 (adresse bit 1020 à 102F)

TS	Utilisation	E11	E12	E13	E14	E15	E22	E23	E32	E33
17	Protection 27D (min Udir) exemplaire 1									
18	Protection 27D (min Udir) exemplaire 2									
19	Protection 27/27S (min U) exemplaire 1									
20	Protection 27/27S (min U) exemplaire 2									
21	Protection 27R (min U rem)									
22	Protection 59 (max U) exemplaire 1									
23	Protection 59 (max U) exemplaire 2									
24	Protection 59N (max V0) exemplaire 1	•						•		
25	Protection 59N (max V0) exemplaire 2									-
26	Protection 81H (max F) exemplaire 1									
27	Protection 81H (max F) exemplaire 2							•		
28	Protection 81L (min F) exemplaire 1							•		
29	Protection 81L (min F) exemplaire 2									
30	Protection 81L (min F) exemplaire 3							•		
31	Protection 81L (min F) exemplaire 4									
32	Protection 66 (nb de démarrages)									

Mot d'adresse 103 : TS033 à TS048 (adresse bit 1030 à 103F)

TS	Utilisation	E11	E12	E13	E14	E15	E22	E23	E32	E33
33	Protection 67 exemplaire 1									
34	Protection 67 exemplaire 2									
35	Protection 67N exemplaire 1									
36	Protection 67N exemplaire 2									
37	Protection 47 (max U inverse)									
38	Protection 32P (max de puissance active)									•
39	Protection 50BF (défaillance disjoncteur)									
40	Protection 32Q (max. de puissance réactive)									
41	Protection 51V (max. de I à retenue de tension)									
42	Défaut TC									
43	Défaut TP Phase									
44	Défaut TP V0									
45	Protection PWH exemplaire 1									
46	Protection PWH exemplaire 2									
47	Réservé									
48	Réservé									

5/17

Mot d'adresse 104 : TS049 à TS064 (adresse bit 1040 à 104F) TS Utilisation E13 E14 E15 49 Réservé 50 Réservé Réservé Réservé Réservé Réservé 54 56 Réservé 57 Réservé 58 Réservé 59 Réservé 61 Réservé Réservé 63 Réservé Réservé

Communication Modbus

80 Protection 49T module 1 seuil déclenchement sonde 8

		e 1									
TS	Utilisation	E11	E12	E13	E14	E15	E22	E23	E32	E33	
65	Protection 49T module 1 seuil alarme sonde 1										
66	Protection 49T module 1 seuil déclenchement sonde 1										
67	Protection 49T module 1 seuil alarme sonde 2										
68	Protection 49T module 1 seuil déclenchement sonde 2										
69	Protection 49T module 1 seuil alarme sonde 3										
70	Protection 49T module 1 seuil déclenchement sonde 3										
71	Protection 49T module 1 seuil alarme sonde 4										
72	Protection 49T module 1 seuil déclenchement sonde 4										
73	Protection 49T module 1 seuil alarme sonde 5										
74	Protection 49T module 1 seuil déclenchement sonde 5										
75	Protection 49T module 1 seuil alarme sonde 6										
76	Protection 49T module 1 seuil déclenchement sonde 6										
77	Protection 49T module 1 seuil alarme sonde 7										
78	Protection 49T module 1 seuil déclenchement sonde 7										
79	Protection 49T module 1 seuil alarme sonde 8										

		Mot d	'adresse	106 : TS	081 à TS	096 (adre	sse bit 1	060 à 10	6 F)	
TS	Utilisation	E11	E12	E13	E14	E15	E22	E23	E32	E33
81	Protection 49T module 2 seuil alarme sonde 1									
82	Protection 49T module 2 seuil déclenchement sonde 1									
83	Protection 49T module 2 seuil alarme sonde 2									
84	Protection 49T module 2 seuil déclenchement sonde 2									
85	Protection 49T module 2 seuil alarme sonde 3									
86	Protection 49T module 2 seuil déclenchement sonde 3									
87	Protection 49T module 2 seuil alarme sonde 4									
88	Protection 49T module 2 seuil déclenchement sonde 4									
89	Protection 49T module 2 seuil alarme sonde 5									
90	Protection 49T module 2 seuil déclenchement sonde 5									
91	Protection 49T module 2 seuil alarme sonde 6									
92	Protection 49T module 2 seuil déclenchement sonde 6									
93	Protection 49T module 2 seuil alarme sonde 7									
94	Protection 49T module 2 seuil déclenchement sonde 7									
95	Protection 49T module 2 seuil alarme sonde 8									
96	Protection 49T module 2 seuil déclenchement sonde 8									

SEPED303006FR Schneider Flectric

13	t d'adresse 107 : TS097 à TS112 (adresse bit 10 Utilisation	E11	E12	E13	E14	E15	E22	E23	E32	E33
7	Réenclencheur en service									
}	Réenclencheur en cours									
)	Réenclencheur déclenchement définitif									
00	Réenclencheur réenclenchement réussi									
)1	Emission attente logique 1		•	•				•		
)2	Téléréglage interdit		•	•			•	•		•
)3	Télécommande interdite		•	•				•		
)4	Sepam non réarmé après défaut				•					
)5	Discordance TC / position		•	•			•	•		•
)6	Défaut complémentarité ou Trip Circuit Supervision		•	•				•		
7	Enregistrement OPG mémorisé				•					
8	Défaut commande		•	•			•	•		•
9	Enregistrement OPG inhibé			•				•		
0	Protection thermique inhibée									
1	Défaut sondes module MET148-1									
2	Défaut sondes module MET148-2									
s	t d'adresse 108 : TS113 à TS128 (adresse bit 10 Utilisation)80 à 108F E11	E12	E13	E14	E15	E22	E23	E32	E33
	Déclenchement Thermistor									
	Alarme Thermistor									
-	Déclenchement externe 1			•			•	•		
-	Déclenchement externe 2									
	Déclenchement externe 3									
	Déclenchement Buchholz									
	Déclenchement thermostat									
	Déclenchement pression									
	Alarme Buchholz									
_	Alarme thermostat									
	Alarme pression									
	Alarme SF6									
	Réenclencheur prêt									
	Inductif									
	Capacitif									
8	Rotation inverse phase									
	t d'adresse 109 : TS129 à TS144 (adresse bit 10 Utilisation	90 à 109F E11	F) E12	E13	E14	E15	E22	E23	E32	E33
	Emission attente legique 2									
	5 1									
29 30	Réservé									
80 81	Réservé Réservé									
1	Réservé Réservé									
30 31 32 33	Réservé Réservé Réservé									
1 2 3	Réservé Réservé Réservé Réservé									
1 2 3	Réservé Réservé Réservé									
10 11 12 13 14	Réservé Réservé Réservé Réservé									
30 31 32 33 34 35 36	Réservé									
30 31 32 33 34 35 36	Réservé Réservé Réservé Réservé Réservé Réservé Réservé									
0 1 2 3 4 5 6 7	Réservé									
10 11 12 13 14 15 16 17 18	Réservé									
0 1 2 3 4 5 6 7 8 9	Réservé									
0 1 2 3 4 5 6 7 8 9 0	Réservé									

Utilisation des télécommandes

Les télécommandes sont préaffectées à des fonctions de protections, de commandes ou de mesures. Les télécommandes peuvent s'effectuer selon 2 modes :

- mode direct
- mode confirmé SBO (select before operate).

 Il est possible d'inhiber toutes les télécommandes par une entrée TOR affectée à la fonction "Interdiction TC", à l'exception de la télécommande de déclenchement TC1 qui reste activable à tout moment.

Le paramétrage de l'entrée TOR peut être effectué selon 2 modes :

- interdiction si l'entrée est à 1
- interdiction si l'entrée est à 0 (entrée inversée)
 Les télécommandes de déclenchement et
 d'enclenchement de l'appareil, mise en ou hors service
 du réenclencheur sont prises en compte si la fonction
 "commande disjoncteur" est validée et si les entrées
 nécessaires à cette logique sont présentes (1).

Télécommande directe

La télécommande est exécutée dès l'écriture dans le mot de télécommande. La mise à zéro est réalisée par la logique de commande après la prise en compte de la télécommande

Télécommande confirmée SBO (select before operate)

Dans ce mode la télécommande se fait en 2 temps :

- sélection par le superviseur de la commande à passer par écriture du bit dans le mot STC et vérification éventuelle de la sélection par relecture de ce mot
- exécution de la commande à passer par écriture du bit dans le mot TC. La télécommande est exécutée si le bit du mot STC et le bit du mot associé sont positionnés, la mise à zéro des bits STC et TC est réalisée par la logique de commande après la prise en compte de la télécommande. La désélection du bit STC intervient :
- si le superviseur le désélectionne par une écriture dans le mot STC
- si le superviseur sélectionne (écriture bit) un autre bit que celui déjà sélectionné
- si le superviseur positionne un bit dans le mot TC qui ne correspond pas à la sélection. Dans ce cas aucune télécommande ne sera exécutée.

Mot d'adresse 0F0 : TC1 à 16 (adresse bit 0F00 à 0F0F)

					•			•		
TC	Utilisation	E11	E12	E13	E14	E15	E22	E23	E32	E33
1	Déclenchement									
2	Enclenchement			•	•		•		•	
3	Basculement sur jeu A de réglages									
4	Basculement sur jeu B de réglages						•			
5	Réarmement Sepam (reset)			•	•		•		•	
6	Remise à zéro maximètres									
7	Inhibition protection thermique									
8	Inhibition déclenchement OPG *									
9	Validation déclenchement OPG *									
10	Déclenchement manuel OPG *									
11	Mise en service réenclencheur									
12	Mise hors service réenclencheur									
13	Validation protection thermique									
14	Reset protection min. de I									
15	Réservé									

^{*} OPG : oscilloperturbographie.

16 Réservé

Télécommande de la sortie analogique

La sortie analogique du module MSA141 peut être paramétrée pour commande à distance via la communication Modbus (mot adresse 10F). La plage utile de la valeur numérique transmise est définie par les paramétrages "valeur min" et "valeur max" de la sortie analogique.

Cette fonction n'est pas affectée par les conditions d'interdiction des télécommandes.

Horodatation des événements

Présentation

La communication assure l'horodatation des informations traitées par Sepam. La fonction horodatation permet d'attribuer une date et une heure précise à des changements d'états, dans le but de pouvoir les classer avec précision dans le temps. Ces informations horodatées sont des événements qui peuvent être exploités à distance par le superviseur à l'aide du protocole de communication pour assurer les fonctions de consignation d'événements et de restitution dans l'ordre chronologique. Les informations horodatées par Sepam sont :

- les entrées tout ou rien
- les télésignalisations
- des informations relatives à l'équipement Sepam (voir mot contrôle-Sepam).

L'horodatation est systématique.

La restitution dans l'ordre chronologique de ces informations horodatées est à réaliser par le superviseur.

Horodatation

La datation des événements dans Sepam utilise l'heure absolue (voir paragraphe date et heure). Lorsqu'un événement est détecté, l'heure absolue élaborée par l'horloge interne de Sepam lui est associée. L'horloge interne de chaque Sepam doit être

L'horloge interne de chaque Sepam doit être synchronisée pour qu'elle ne dérive pas et pour qu'elle soit identique avec celles des autres Sepam et ainsi permettre de réaliser le classement chronologique inter-Sepam.

Pour gérer son horloge interne, Sepam dispose de 2 mécanismes :

■ mise à l'heure :

pour initialiser ou modifier l'heure absolue. Un message Modbus particulier appelé "message horaire" permet la mise à l'heure de chaque Sepam

■ synchronisation :

pour éviter les dérives de l'horloge interne de Sepam et garantir la synchronisation inter-Sepam.

La synchronisation peut être réalisée selon deux principes :

■ synchronisation interne :

par le réseau de communication sans câblage complémentaire

■ synchronisation externe :

par une entrée tout ou rien avec câblage complémentaire.

Lors de la mise en service, l'exploitant paramètre le mode de synchronisation.

Initialisation de la fonction horodatation

A chaque initialisation de la communication (mise sous tension de Sepam), les événements sont générés dans l'ordre suivant :

- apparition "perte information"
- apparition "pas à l'heure"
- apparition "pas synchrone"
- disparition "perte information".

La fonction s'initialise avec la valeur courante des états des télésignalisations et des entrées tout ou rien sans créer d'événements relatifs à ces informations. Après cette phase d'initialisation, la détection des événements est activée.

Elle ne peut être suspendue que par une éventuelle saturation de la file interne de mémorisation des événements, ou par la présence d'un défaut majeur sur Sepam.

Date et heure

Présentation

Une date et une heure absolue sont gérées en interne par Sepam constituées des informations Année : Mois : Jour : Heure : minute : milliseconde.

Le format de la date et de l'heure est normalisé (réf : CEI 60870-5-4).

Sauvegarde

L'horloge interne de Sepam est sauvegardée pendant 24 heures. Après une coupure de l'alimentation d'une durée supérieure à 24 heures, une remise à l'heure est nécessaire.

La durée de sauvegarde de la date et de l'heure de Sepam en cas de coupure de l'alimentation dépend de la température ambiante et de l'âge de Sepam.

Durées de sauvegarde typiques :

■ à 25° ■ à 40°

□ 24 h pendant 7 ans □ 24 h pendant 3 ans □ 18 h au bout de 10 ans □ 16 h au bout de 10 ans

□ 14 h au bout de 15 ans □ 10 h au bout de 15 ans

Mise à l'heure

L'horloge interne de Sepam peut être mise à l'heure de 3 manières différentes :

- par le superviseur, via la liaison Modbus,
- par le SFT2848, écran "Caractéristiques générales"
- à partir de l'afficheur des Sepam équipés de l'IHM avancée.

L'heure associée à un événement est codée sur 8 octets de la manière suivante :

b15	b14	b13	b12	b11	b10	b09	b08	b07	b06	b05	b04	b03	b02	b01	b00	mot
0	0	0	0	0	0	0	0	0	Α	Α	Α	Α	Α	Α	Α	mot 1
0	0	0	0	М	М	М	М	0	0	0	J	J	J	J	J	mot 2
0	0	0	Н	Н	Н	Н	Н	0	0	mn	mn	mn	mn	mn	mn	mot 3
ms	mot 4															

A - 1 octet pour les années : variation de 0 à 99 années.

Le superviseur doit s'assurer que l'année 00 est supérieure à 99.

M - 1 octet pour les mois : variation de 1 à 12.

J - 1 octet pour les jours : variation de 1 à 31.

H - 1 octet pour les heures : variation de 0 à 23.

 ${\bf mn}$ - 1 octet pour les minutes : variation de 0 à 59.

ms - 2 octets pour les millisecondes : variation de 0 à 59999.

Ces informations sont codées en binaire. La mise à l'heure de Sepam s'effectue par la fonction "écriture mot" (fonction N° 16) à l'adresse 0002 avec un message horaire de 4 mots obligatoirement.

Les bits positionnés à "0" dans la description ci-dessus correspondent à des champs du format qui ne sont pas utilisés et pas gérés par Sepam.

Ces bits pouvant être transmis à Sepam avec une valeur quelconque, Sepam effectue les invalidations nécessaires.

Sepam ne réalise aucun contrôle de cohérence et de validité sur la date et l'heure reçues.

Horloge de synchronisation

Pour la mise à la date et à l'heure du Sepam, une horloge de synchronisation est nécessaire ; Schneider Electric a testé le matériel suivant : Gorgy Timing, réf.: RT300, équipé du module M540.

Horodatation des événements

Lecture des événements

Sepam met à disposition du ou des maîtres 2 tables événements. Le maître lit la table événements et acquitte par écriture du mot d'échange. Sepam réactualise sa table d'événements.

Les événements émis par Sepam ne sont pas classés par ordre chronologique.

Structure de la première table d'événements :

- mot d'échange 0040 h
- événement numéro 1

0041 h ... 0048 h

- événement numéro 2 0049 h ... 0050 h
- événement numéro 3
- 0051 h ... 0058 h
 événement numéro 4

0059 h ... 0060 h

Structure de la deuxième table d'événements :

- mot d'échange 0070 h
- événement numéro 1

0071 h ... 0078 h

■ événement numéro 2

0079 h ... 0080 h

■ événement numéro 3

0081 h ... 0088 h

■ événement numéro 4

0089 h ... 0090 h

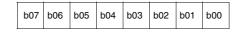
Le superviseur doit obligatoirement lire un bloc de 33 mots à partir de l'adresse 0040h/0070h, ou 1 mot à l'adresse 0040h/0070h.

Mot d'échange

Le mot d'échange permet de gérer un protocole spécifique pour être sûr de ne pas perdre d'événements à la suite d'un problème de communication ; pour cela, la table des événements est numérotée.

Le mot d'échange comporte 2 champs :

■ octet de poids fort = numéro échange (8 bits) : 0..255


Numéro d'échange : 0 .. 255

Description du poids fort du mot d'échange.

Le numéro d'échange contient un octet de numérotation qui permet d'identifier les échanges.

Le numéro d'échange est initialisé à la valeur zéro après une mise sous tension ; lorsqu'il atteint sa valeur maximum (FFh) il repasse automatiquement à 0. La numérotation des échanges est élaborée par Sepam, et acquittée par le superviseur.

■ octet de poids faible = nombre d'événements (8 bits) : 0..4.

Numéro d'échange : 0 .. 4

Description du poids faible du mot d'échange.

Sepam indique le nombre d'événements significatifs dans la table d'événements dans l'octet de poids faible du mot d'échange. Chaque mot des événements non significatifs est initialisé à la valeur zéro.

Acquittement de la table d'événements

Pour avertir Sepam d'une bonne réception du bloc qu'il vient de lire, le superviseur doit écrire, dans le champ "Numéro d'échange", le numéro du dernier échange qu'il a effectué et doit mettre à zéro le champ "Nombre d'événements" du mot d'échange. Après cet acquittement, les 4 événements de la table d'événements sont initialisés à zéro, les anciens événements acquittés sont effacés dans Sepam.

Tant que le mot d'échange écrit par le superviseur n'est pas égal à "X,0" (avec X = numéro de l'échange précédent que le superviseur veut acquitter), le mot d'échange de la table reste à "X, nombre d'événements précédents".

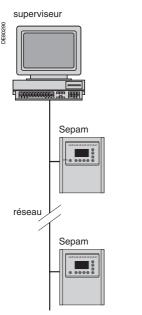
Sepam n'incrémente le numéro d'échange que si de nouveaux événements sont présents (X+1, nombre de nouveaux événements).

Si la table des événements est vide, Sepam ne réalise aucun traitement sur une lecture par le superviseur de la table des événements ou du mot d'échange. Les informations sont codées en binaire.

Effacement d'une file d'événements

L'écriture d'une valeur "xxFFh" dans le mot d'échange (numéro d'échange quelconque, nombre d'événements = FFh) provoque la réinitialisation de la file d'événements correspondante (tous les événements mémorisés et non encore transmis sont supprimés).

Sepam en état de perte informations (1) / non perte information (0)


Sepam possède 2 files internes de stockage d'une capacité de 64 événements. En cas de saturation d'une de ces files, c'est à dire 63 événements déjà présents l'événement "perte information" est généré par Sepam en 64° position, et la détection d'événements est suspendue.

Les événements les plus récents sont perdus.

Description du codage d'un événement

Un événement est codé sur 8 mots avec la structure suivante :

Octet de poids fort	Octet de poids fa	nible
Mot 1: type d'événement		
08	00	Pour télésignalisations, info. interne
		entrées tout ou rien
Mot 2 : adresse de l'événement		
		Voir adresses bits 1000 à 105F
Mot 3 : réserve		
00	00	
Mot 4: front descendant : disparition	on ou front montai	nt : apparition
00	00	Front descendant
00	01	Front montant
Mot 5 : année		
00	0 à 99 (année)	
Mot 6 : mois-jour		
1 à 12 (mois)	1 à 31 (jour)	
Mot 7 : heures-minutes		
0 à 23 (heures)	0 à 59 (minutes)	
Mot 8 : millisecondes		
0 à 59999		

Architecture "synchronisation interne" par le réseau de communication.

Synchronisation

Deux modes de synchronisation sont acceptés par Sepam :

- mode de synchronisation "interne par le réseau" par diffusion générale d'une trame "message horaire" par le réseau de communication. Une diffusion générale se réalise avec le numéro d'esclave 0
- mode de synchronisation "externe" par une entrée tout ou rien. Le mode de synchronisation est sélectionné lors de la mise en service par SFT2848.

Mode de synchronisation interne par le réseau

La trame "message horaire" est utilisée à la fois pour la mise à l'heure et la synchronisation de Sepam ; dans ce cas elle doit être transmise régulièrement à intervalles rapprochés (entre 10 et 60 secondes) pour obtenir une heure synchrone. A chaque nouvelle réception d'une trame horaire, l'horloge interne de Sepam est recalée, et le synchronisme est conservé si l'amplitude de recalage est inférieure à 100 millisecondes.

En mode de synchronisation interne par le réseau, la précision est liée au maître, et à sa maîtrise du délai de transmission de la trame horaire sur le réseau de communication.

La synchronisation de Sepam est effectuée sans délai dès la fin de la réception de la trame.

Tout changement d'heure est effectué par envoi d'une trame au Sepam avec les nouvelles date et heure.

Sepam passe alors transitoirement en état non synchrone.

Lorsque Sepam est en état synchrone, l'absence d'une réception de "message horaire" durant 200 secondes, provoque la génération de l'événement apparition "pas synchrone".

superviseur horloge Sepam réseau liaison de synchronisation Sepam

Architecture "synchronisation externe" par une entrée logique.

Synchronisation (suite)

Mode de synchronisation externe par une entrée logique

La synchronisation de Sepam peut être réalisée de manière externe en utilisant une entrée logique (I21) (nécessite de disposer du module MES114).

Horodatation des événements

Le top de synchronisation est déterminé par le front montant de l'entrée logique. Sepam s'adapte à toute périodicité du top de synchronisation entre 10 et 60 s. par pas de 10 s.

Plus la période de synchronisation est faible, meilleure est la précision d'horodatation des changements d'états.

La première trame horaire est utilisée pour initialiser Sepam avec la date et l'heure absolue (les suivantes servent à détecter un changement d'heure éventuel).

Le top de synchronisation est utilisé pour recaler la valeur de l'horloge interne de Sepam. En phase d'initialisation, lorsque Sepam est en mode "non synchrone", le recalage est autorisé dans l'amplitude de ±4 secondes.

En phase d'initialisation, le processus d'accrochage (passage de Sepam en mode "synchrone") est basé sur une mesure de l'écart entre l'heure courante du Sepam et la dizaine de secondes la plus proche. Cette mesure est effectuée à l'instant de la réception du top consécutif à la trame horaire d'initialisation. L'accrochage est autorisé si la valeur de l'écart est inférieur ou égal à 4 secondes, dans ce cas le Sepam passe en mode "synchrone".

Dès lors (après passage en mode "synchrone"), le processus de recalage est basé sur la mesure d'un écart (entre l'heure courante du Sepam et la dizaine de secondes la plus proche à l'instant de la réception d'un top) qui s'adapte à la période du top.

La période du top est déterminée automatiquement par Sepam lors de sa mise sous tension à partir des 2 premiers top reçus : le top doit donc être opérationnel avant la mise sous tension de Sepam.

La synchronisation fonctionne uniquement après une mise à l'heure de Sepam, c'est-à-dire après l'événement disparition "pas à l'heure".

Tout changement d'heure d'amplitude supérieure à ±4 secondes est réalisé par l'émission d'une nouvelle trame horaire. Il en est de même pour le passage de l'heure d'été à l'heure d'hiver (et vice-versa).

Il y a perte temporaire de synchronisme lors du changement d'heure. Le mode de synchronisation externe nécessite l'emploi d'un équipement annexe "horloge de synchronisation" pour générer sur l'entrée logique un top de synchronisation périodique précis.

Si Sepam est en l'état à l'heure et synchrone, il passe en état non synchrone, et génère un événement apparition "pas synchrone", si son écart de synchronisme entre la dizaine de secondes la plus proche et la réception du top de synchronisation est supérieure à l'erreur de synchronisme durant 2 tops consécutifs.

De même si Sepam est en état "à l'heure et synchrone", l'absence d'une réception de top, durant 200 secondes, provoque la génération de l'événement apparition "pas synchrone".

Lecture des réglages à distance (télélecture)

Réglages accessibles en lecture à distance

La lecture des réglages de l'ensemble des fonctions de protections est accessible à distance dans 2 zones indépendantes pour permettre le fonctionnement avec 2 maîtres.

Principe d'échange

La lecture à distance des réglages (télélecture) s'effectue en deux temps :

- tout d'abord le superviseur indique le code de la fonction dont il désire connaître les réglages par une "trame de demande". Cette demande est acquittée au sens Modbus, pour libérer le réseau
- le superviseur vient ensuite lire une zone de réponse, pour y trouver les informations recherchées par une "trame de réponse".

Le contenu de la zone de réponse est spécifique à chaque fonction. Le temps nécessaire entre la demande et la réponse est lié au temps du cycle non prioritaire de Sepam et peut varier de quelques dizaines à quelques centaines de millisecondes.

■ 1re zone de réglage
□ lecture : 1E00h-1E7Ch
□ demande de lecture : 1E80h
□ téléréglage : 1F00h-1F7Ch
■ 2e zone de réglage
□ lecture : 2000h -207Ch
□ demande de lecture : 2080h
□ téléréglage : 2100h -217Ch

Trame de demande

La demande est effectuée par le superviseur, au moyen d'une "écriture mots" (code 6 ou 16) à l'adresse 1E80h ou 2080h d'une trame de 1 mot constituée ainsi :

1E80h/2080h

B15	B14	B13	B12	B11	B10	B09	B08	B07	B06	B05	B04	B03	B02	B01	B00
		(Code f	onctio	n					Num	iéro d'	exem	olaire		

Le contenu de l'adresse 1E80h/2080h peut être relue à l'aide d'une "lecture mots" Modbus (code 3).

Le champ code fonction prend les valeurs suivantes :

- 01h à 99h (codage BCD) pour les fonctions de protection.
- Le champ numéro d'exemplaire est utilisé ainsi :
- pour les protections, il indique l'exemplaire concerné, il varie de 1 à N où N est le nombre d'exemplaires disponibles dans le Sepam
- lorsqu'un seul exemplaire d'une protection est disponible, ce champ n'est pas contrôlé.

Réponses d'exception

En plus des cas habituels, le Sepam peut renvoyer une réponse d'exception Modbus type 07 (non acquittement) si une autre demande de télélecture est en cours de traitement.

Trame de réponse

La réponse, renvoyée par le Sepam, est contenue dans une zone de longueur maximale 125 mots à l'adresse 1E00h ou 2000h, constituée ainsi :

1E00h-1E7Ch/2000h-207Ch

E	315	B14	B13	B12	B11	B10	B09	B08	B07	B06	B05	B04	B03	B02	B01	B00
			(Code f	onctio	n					Num	éro d'	exem	olaire		
								Régl	ages							
					(c	hamp	s spéc	ifique	s à ch	aque 1	fonctio	n)				

Cette zone doit être lue par une "lecture mots" Modbus (code 3) à l'adresse 2000h. La longueur de l'échange peut porter :

- sur le premier mot uniquement (test de validité)
- sur la taille maximum de la zone (125 mots)
- sur la taille utile de la zone (déterminée par la fonction adressée).

Cependant, la lecture doit toujours commencer sur le premier mot de la zone (toute autre adresse provoque une réponse d'exception "adresse incorrecte").

Le premier mot de la zone (code fonction et numéro d'exemplaire) peut prendre les valeurs suivantes :

xxyy: avec

- code fonction xx différent de 00 et FFh
- numéro d'exemplaire yy différent de FFh.

Les réglages sont disponibles et validés. Ce mot est la copie de "la trame de demande". Le contenu de la zone reste valide jusqu'à la demande suivante. Les autres mots ne sont pas significatifs.

FFFh: la "trame de demande" a été prise en compte, mais le résultat dans "la zone de réponse" n'est pas encore disponible. Il est nécessaire de faire une nouvelle lecture de "la trame de réponse". Les autre mots ne sont pas significatifs.

xxFFh: avec le code fonction xx différent de 00 et FFh. La demande de lecture des réglages de la fonction désignée n'est pas valide. La fonction n'existe pas dans le Sepam concerné, ou elle n'est pas autorisée en télélecture : se reporter à la liste des fonctions qui supportent la télélecture des réglages.

A ATTENTION

RISQUE DE FONCTIONNEMENT IMPREVU

- L'équipement doit être configuré et réglé uniquement par un personnel qualifié, à partir des résultats de l'étude du système de protection de l'installation.
- Lors de la mise en service de l'installation et après toute modification, contrôlez que la configuration et les réglages des fonctions de protection du Sepam sont cohérents avec les résultats de cette étude.

Le non-respect de ces instructions peut entraîner des dommages matériels.

Réglage à distance (téléréglage)

Informations réglables à distance

L'écriture des réglages de l'ensemble des fonctions de protections est accessible à distance.

Principe d'échange

Pour les Sepam, le réglage à distance est autorisé.

Le réglage à distance (téléréglage) s'effectue, pour une fonction donnée, exemplaire par exemplaire.

Il se déroule en deux temps :

- tout d'abord le superviseur indique le code de la fonction et le numéro d'exemplaire, suivi des valeurs de tous les réglages dans une "trame demande d'écriture". Cette demande est acquittée, pour libérer le réseau
- le superviseur vient ensuite lire, une zone de réponse destinée à vérifier la prise en compte des réglages. Le contenu de la zone de réponse est spécifique à chaque fonction.

Il est identique à celui de la trame de réponse de la fonction de télélecture. Pour régler à distance, il est nécessaire de régler tous les réglages de la fonction concernée, même si certains sont inchangés.

Trame de demande

La demande est effectuée par le superviseur, au moyen d'une "écriture de n mots" (code 16) à l'adresse 1F00h ou 2100h. La zone à écrire est de 125 mots maximum. Elle contient les valeurs de tous les réglages. Elle est constituée ainsi :

1F00h/2100h

B15	B14	B13	B12	B11	B10	B09	B08	B07	B06	B05	B04	B03	B02	B01	B00
		(Code f	onctio	n					Num	éro d'	exemp	olaire		
							Rég	ages							
				(c	hamp	s spéc	ifique	s à ch	aque	fonctio	n)				

Le contenu de l'adresse 2100h peut être relue à l'aide d'une "lecture n mots" (code 3).

■ le champ code fonction prend les valeurs suivantes :

01h à 99h (codage BCD) pour liste des fonctions de protection F01 à F99

■ le champ numéro d'exemplaire est utilisé ainsi :

pour les protections, il indique l'exemplaire concerné, il varie de 1 à N où N est le nombre d'exemplaires disponibles dans le Sepam. Il ne peut jamais valoir 0.

Réponse d'exception

En plus des cas habituels, le Sepam peut renvoyer une réponse d'exception type 07 (non acquittement) si :

- une autre demande de lecture ou de réglage est en cours de traitement
- la fonction de téléréglage est inhibée.

5/27

Accès aux réglages à distance

Trame de réponse

La réponse, renvoyée par le Sepam est identique à la trame de réponse de la télélecture. Elle est contenue dans une zone de longueur maximale de 125 mots à l'adresse 1E00h ou 2000h, et est constituée des réglages effectifs de la fonction après contrôle sémantique :

1E00h-1E7Ch/2000h-207Ch

B15	B14	B13	B12	B11	B10	B09	B08	B07	B06	B05	B04	B03	B02	B01	B00
		(Code f	onctio	n					Num	éro d'	exem	olaire		
							Régl	ages							
				(c	hamp	s spéc	ifique	s à ch	aque f	fonctio	n)				

Cette zone doit être lue par une "lecture de n mots" Modbus (code 3) à l'adresse 1E00h ou 2000h.

La longueur de l'échange peut porter :

- sur le premier mot uniquement (test de validité)
- sur la taille maximum de la zone de réponse (125 mots)
- sur la taille utile de la zone de réponse (déterminée par la fonction adressée). Cependant, la lecture doit toujours commencer sur le premier mot de la zone d'adresse (toute autre adresse provoque une réponse d'exception "adresse

Le premier mot de la zone de réponse (code fonction, numéro d'exemplaire) prend les mêmes valeurs que celles décrites pour la trame de réponse de la télélecture.

- xxyy : avec :
- □ code fonction xx différent de 00h et FFh
- □ numéro d'exemplaire yy différent de FFh.

Les réglages sont disponibles et validés. Ce mot est la copie de la "trame de demande". Le contenu de la zone reste valide jusqu'à la demande suivante.

- 0000h : aucune "trame de demande" n'a encore été formulée.
- C'est particulièrement le cas à la mise sous tension du Sepam.

Les autres mots ne sont pas significatifs.

- FFFFh: la "trame de demande" a été prise en compte, mais le résultat dans la zone de réponse n'est pas encore disponible. Il est nécessaire de faire une nouvelle lecture de la trame de réponse. Les autres mots ne sont pas significatifs.
- xxFFh: avec code de fonction xx différent de 00h et de FFh. La demande de réglage de la fonction désignée n'est pas valide. La fonction n'existe pas dans le Sepam concerné, ou l'accès aux réglages est impossible aussi bien en lecture qu'en écriture.

SEPED303006FR Schneider Schneider

Description des réglages

Format des données

Tous les réglages sont transmis sous forme d'entier 32 bits signé (codage, en complément à 2).

Valeur particulière de réglage :

7FFF FFFFh signifie que le réglage est hors plage de validité.

- 1 Le réglage EN ou HORS service est codé de la manière suivante :
- 0 = Hors service, 1 = En service
- 2 Le réglage de la courbe de déclenchement est codé de la manière suivante :
- 0 = indépendant

9 = CEI VIT/B 1 = inverse 2 = long time inverse 10 = CEI EIT/C 3 = très inverse 11 = IEEE Mod. inverse 4 = extrêmement inverse 12 = IEEE Very inverse 5 = ultra inverse 13 = IEEE extr. inverse 6 = RI14 = IAC inverse 7 = CEI SIT/A 15 = IAC very inverse 8 = CEI LTI/B 16 = IAC extr. inverse

- ③ Le réglage de la courbe temps de maintien est codé de la manière suivante :
- 0 = indépendant
- 1 = dépendant
- 4 La variable retenue H2 est codée de la manière suivante :
- 0 = retenue H2
- 1 = pas de retenue H2
- ⑤ Le réglage de la courbe de déclenchement est :
- 0 = constant
- 1 = dépendant
- 6 Réglage de l'accrochage et de la commande disjoncteur
- 0 = Non
- 1 = Oui
- 7 Courbe de déclenchement pour max I inverse :

0 = indépendant9 = CEI VIT/B 12 = IEEE Very inverse 7 = CEI SIT/A 10 = CEI EIT/C 13 = IEEE extr. inverse 8 = CEI LTI/B 11 = IEEE Mod. inverse 17 = spécifique Schneider

8 Le mode d'activation de chacun des cycles est codé de la manière suivante : Correspondance position du bit / protection selon le tableau ci-dessous :

Bit	Activation par
0	Instantané max I phase exemplaire 1
1	Temporisé max I phase exemplaire 1
2	Instantané max I phase exemplaire 2
3	Temporisé max I phase exemplaire 2
	Instantané max I phase exemplaire 3
5	Temporisé max I phase exemplaire 3
6	Instantané max I phase exemplaire 4
7	Temporisé max I phase exemplaire 4
8	Instantané max I0 exemplaire 1
9	Temporisé max I0 exemplaire 1
10	Instantané max I0 exemplaire 2
11	Temporisé max I0 exemplaire 2
12	Instantané max I0 exemplaire 3
13	Temporisé max I0 exemplaire 3
14	Instantané max I0 exemplaire 4
15	Temporisé max I0 exemplaire 4
16	Instantané max I0 directionnelle exemplaire 1
17	Temporisé max I0 directionnelle exemplaire 1
18	Instantané max I0 directionnelle exemplaire 2
19	Temporisé max I0 directionnelle exemplaire 2
20	Instantané max I directionnelle exemplaire 1
21	Temporisé max I directionnelle exemplaire 1
22	Instantané max I directionnelle exemplaire 2
23	Temporisé max I directionnelle exemplaire 2
24	V_TRIPCB (équation logique)
L'état du h	nit est codé de la minière suivante :

L'état du bit est codé de la minière suivante :

- 0 = Pas d'activation par la protection
- 1 = Activation par la protection.

5/29

	_	•	•		•	•	
Nu	mé	ro de	fonction	: 3002			

Réglage	Données	Format/unité
1	Fréquence nominale	0 = 50 Hz, 1 = 60 Hz
2	Autorisation téléréglage	1 = interdit
3	Langue d'utilisation	0 = anglais, 1 = autre
4	Jeu de réglage actif	0 = Jeu A 1 = Jeu B 3 = Choix par I13 4 = Choix par télécommande
5	Mode de réglage	0 = TMS, 1 = I/Is
6	Calibre des TC phases	0 = 5 A, 1 = 1 A
7	Nombre de TC phases	0 = 3 TC, 1 = 2 TC
8	Courant nominal In	A
9	Courant de base Ib	A
10	Mode de détermination du courant résiduel	0 = Aucun 1 = CSH 2 A 2 = CSH 2 O A 3 = CSH + TC 1 A 4 = CSH + TC 5 A 5 = ACE990 Plage 1 6 = ACE990 Plage 2 7 = CSH 5 A 8 = CSH + TC 1 A sensible 9 = CSH + TC 5 A sensible
11	Courant résiduel nominal (In0)	Α
12	Période d'intégration	0 = 5 mn, 1 = 10 mn 2 = 15 mn, 3 = 30 mn 4 = 60 mn
13	Réserve	
14	Tension nominale primaire Unp	V
15	Tension nominale secondaire Uns	0 = 100 V, 1 = 110 V 2 = 115 V, 3 = 120 V 4 = 200 V, 5 = 230 V
16	Câblage des TP	0 = 3 V, 1 = 2 U, 2 = 1 U
17	Mode tension résiduelle	0 = Aucune 1 = Σ 3 V 2 = TP externe – Uns/ $\sqrt{3}$ 3 = TP externe – Uns/3
18	Type cellule	0 = arrivée 1= départ
19	Incrément de puissance active	0,1 kW.h
20	Incrément de puissance réactive	0,1 kvar.h

Réglages de la protection wattmétrique homopolaire (32N)

Numéro de fonction : 28xx

Exemplaire 1 : xx = 01 à exemplaire 2 : xx = 02

Réglage	Données	Format/unité
1	Accrochage	6
2	Commande disjoncteur	6
3	Activité	1)
4	Réserve	-
5	Réserve	-
6	Direction	0 ligne, 1 barre
7	Tension de seuil	% Unp
8	Seuil de puissance active résiduelle	kW 0 = 20, 1 = 40, 2 = 80, 3 = 120
9	Temporisation de déclenchement	10 ms
10	Temps mémoire	10 ms 0 = 100, 1 = 200
11	Réserve	-
12	Réserve	-
13	Réserve	-
14	Réserve	-

Schneider Electric SEPED303006FR

Réglages de la protection maximum de courant phase (50/51)

Numéro de fonction : 01xx

exemplaire 1 : xx = 01 à exemplaire 4 : xx = 04

Réglage	Données	Format/unité
1	Accrochage	6
2	Commande disjoncteur	6
3	Activité	1
4	Confirmation	0 = sans, 1 = max de U inv, 2 = Min de U
5	Réserve	-
6	Réserve	-
7	Jeu A – courbe de déclenchement	2
8	Jeu A – courant de seuil	0,1 A
9	Jeu A – temporisation de déclenchement	10 ms
10	Jeu A – courbe de maintien	3
11	Jeu A – temps de maintien	10 ms
12	Réserve	-
13	Réserve	-
14	Réserve	-
15	Réserve	-
16	Jeu B – courbe de déclenchement	2
17	Jeu B – courant de seuil	0,1 A
18	Jeu B – temporisation de déclenchement	10 ms
19	Jeu B – courbe de maintien	3
20	Jeu B – temps de maintien	10 ms
21	Réserve	
22	Réserve	
23	Réserve	
24	Réserve	

Réglages de la protection maximum de courant terre (50N/51N)

Numéro de fonction : 02xx

Exemplaire 1 : xx = 01 à exemplaire 4 : xx = 04

Réglage	Données	Format/unité
1	Accrochage	6
2	Commande disjoncteur	6
3	Activité	1)
4	Type I0	0 calculé, 1 mesuré
5	Réserve	-
6	Réserve	-
7	Jeu A – courbe de déclenchement	2
8	Jeu A – courant de seuil	0,1 A
9	Jeu A – temporisation de déclenchement	10 ms
10	Jeu A – courbe de maintien	3
11	Jeu A – temps de maintien	10 ms
12	Jeu A – retenue H2	0 oui, 1 non
13	Réserve	-
14	Réserve	-
15	Réserve	-
16	Réserve	-
17	Jeu B – courbe de déclenchement	2
18	Jeu B – courant de seuil	0,1 A
19	Jeu B – temporisation de déclenchement	10 ms
20	Jeu B – courbe de maintien	3
21	Jeu B – temps de maintien	10 ms
22	Jeu B – retenue H2	0 oui, 1 non
23	Réserve	-
24	Réserve	-
25	Réserve	-
26	Réserve	-

Réglages de la protection minimum de tension (27/27S)

Numéro de fonction : 10xx

Exemplaire 1 : xx = 01 à exemplaire 2 : xx = 02

Réglage	Données	Format/unité
1	Accrochage	6
2	Commande disjoncteur	6
3	Activité	1)
4	Réserve	-
5	Réserve	-
6	Mode tension	0 = simple, 1 = composée
7	Tension de seuil	% Unp/Vnp
8	Temporisation de déclenchement	10 ms
9	Réserve	-
10	Réserve	-
11	Réserve	-
12	Réserve	-

Réglages de la protection maximum de tension (59)

Numéro de fonction : 11xx

Exemplaire 1 : xx = 01 à exemplaire 2 : xx = 02

Réglage	Données	Format/unité
1	Accrochage	6
2	Commande disjoncteur	6
3	Activité	1
4	Réserve	-
5	Réserve	-
6	Mode tension	0 = simple
		1 = composée
7	Tension de seuil	% Unp/Vnp
8	Temporisation de déclenchement	10 ms
9	Réserve	-
10	Réserve	-
11	Réserve	-
12	Réserve	-

Réglages de la protection maximum de tension résiduelle (59N)

Numéro de fonction : 12xx

Exemplaire 1 : xx = 01 à exemplaire 2 : xx = 02

Réglage	Données	Format/unité
1	Accrochage	6
2	Commande disjoncteur	6
3	Activité	1)
4	Réserve	-
5	Réserve	-
6	Tension de seuil	% Unp
7	Temporisation de déclenchement	10 ms
8	Réserve	-
9	Réserve	-
10	Réserve	-
11	Réserve	-

Réglages de la protection maximum de fréquence (81H)

Numéro de fonction : 13xx Exemplaire 1 : xx = 01 à exemplaire 2 : xx = 02

Exemplate 1. XX = 01 a exemplate 2. XX = 02		
Réglage	Données	Format/unité
1	Accrochage	6
2	Commande disjoncteur	6
3	Activité	1
4	Réserve	-
5	Réserve	-
6	Seuil de fréquence	0.1 Hz
7	Temporisation de déclenchement	10 ms
8	Réserve	-
9	Seuil Vs	% Unp
10	Réserve	-
11	Réserve	-

Réglages de la protection minimum de fréquence (81L)

Numéro de fonction : 14xx

Exemplaire 1 : xx = 01 à exemplaire 4 : xx = 04

Réglage	Données	Format/unité
1	Accrochage	6
2	Commande disjoncteur	6
3	Activité	1)
4	Réserve	-
5	Réserve	-
6	Seuil de fréquence	0,1 Hz
7	Temporisation de déclenchement	10 ms
8	Retenue	0 sans 1 sur variation de fréquence
9	Seuil Vs	% Unp
10	Seuil inhibition	0,1 Hz/s
		sur variation de fréquence

Réglages de la protection maximum de puissance active (32P)

Numéro de fonction : 23xx

Exemplaire 1 : xx = 01 à exemplaire 2 : xx = 02

Réglage	Données	Format/unité
1	Accrochage	6
2	Commande disjoncteur	6
3	Activité	1)
4	Туре	0 = retour de puissance 1 = maximum de puissance
5	Réserve	-
6	Réserve	-
7	Seuil de puissance Ps	100 W
8	Temporisation de déclenchement	10 ms
9	Réserve	-
10	Réserve	-
11	Réserve	-
12	Réserve	-

Réglages de la surveillance TC (TC) Numéro de fonction : 2601

Réglage	Données	Format/unité
1	Réserve	-
2	Réserve	-
3	Activité	1
4	Réserve	-
5	Réserve	-
6	Action sur les protections 46, 51N, 32P, 32Q	0 sans, 1 inhibition
U		
7	Temporisation de déclenchement	10 ms
7 8		10 ms -
7 8 9	Temporisation de déclenchement	10 ms -
	Temporisation de déclenchement Réserve	10 ms

Réglages de la surveillance TP (TP) Numéro de fonction : 2701

Numéro de	e fonction : 2701	
Réglage	Données	Format/unité
1	Réserve	-
2	Réserve	=
3	Activité	1)
4	Réserve	-
5	Réserve	-
6	Utilisation des 3 tensions	6
7	Utilisation présence courant	6
8	Utilisation Vi et li	6
9	Action sur les protections 27/27S, 27D, 32P, 32Q, 47, 51V, 59, 59N	0 sans, 1 inhibition
10	Action sur la protection 67	0 non directionnel, 1 inhibition
11	Action sur la protection 67N	0 non directionnel, 1 inhibition
12	Seuil Vi	%
13	Seuil li	%
14	Temporisation critère 3 tensions	10 ms
15	Temporisation critère Vi, li	10 ms
16	Réserve	-
17	Réserve	-
18	Réserve	=
19	Réserve	-

Communication Modbus

Oscilloperturbographie

Présentation

La fonction oscilloperturbographie permet l'enregistrement de signaux analogiques et logiques pendant un intervalle de temps.

Le Sepam série 48 peut mémoriser jusqu'à 19 enregistrements.

Chaque enregistrement est constitué de deux fichiers :

- fichier de configuration d'extension .CFG
- fichier de données d'extension .DAT.

Le transfert des données de chaque enregistrement peut s'effectuer via la liaison Modbus.

Il est possible de transférer 1 à 19 enregistrements vers un superviseur. Le transfert d'enregistrement peut s'effectuer autant de fois que possible, tant qu'il n'est pas écrasé par un nouvel enregistrement.

Si un enregistrement est effectué par le Sepam lorsque l'enregistrement le plus ancien est en cours de transfert, ce dernier est arrêté.

Si une commande (par exemple une demande de télélecture ou de téléréglage) est effectuée pendant un transfert d'enregistrement d'oscilloperturbographie, celui-ci n'est pas perturbé.

Mise à l'heure

Chaque enregistrement peut être daté. La mise à l'heure de Sepam est décrite dans le paragraphe "Horodatation des évènements.

Transfert des enregistrements

La demande de transfert s'effectue enregistrement par enregistrement. Un fichier de configuration et un fichier de données sont produits par enregistrement.

Le superviseur envoie les commandes pour :

- connaître le nombre et les caractéristiques des enregistrements mémorisés dans une zone d'identification
- lire le contenu des différents fichiers
- acquitter chaque transfert
- relire la zone d'identification pour s'assurer que l'enregistrement figure toujours dans la liste des enregistrements disponibles.

2 zones de transfert sont à disposition :

- 1ère zone de transfert
- □ trame de demande : 2200h-2203h
- □ zone d'identification : à partir de 2204h
- □ trame de réponse : à partir de 2300h
- 2e zone de transfert
- □ trame de demande : 2400h-2403h
- □ zone d'identification : à partir de 2404h
- □ trame de réponse : à partir de 2500h.

Lecture de la zone d'identification

Compte tenu du volume d'informations à transmettre, le superviseur doit s'assurer qu'il y a des informations à rapatrier et préparer les échanges le cas échéant. La lecture de la zone d'identification, décrite ci-après, se fait par lecture Modbus de N mots à partir de l'adresse 2204h/2404h:

- 2 mots de réserve forcés à 0
- taille des fichiers de configuration des enregistrements codés sur 1 mot
- taille des fichiers de données des enregistrements codés sur 2 mots
- nombre d'enregistrements codés sur 1 mot
- date de l'enregistrement N° 1 (le plus récent) codé sur 4 mots (voir format ci-dessous)
- date de l'enregistrement N° 2 codés sur 4 mots (voir format ci-dessous)
- **.**..
- date de l'enregistrement N° 19 (le plus ancien) codés sur 4 mots (voir format ci dessous
- 27 mots de réserve.

Toutes ces informations sont consécutives

Lecture du contenu des différents fichiers

Trame de demande

La demande est effectuée par le superviseur en écrivant sur 4 mots à partir de l'adresse 2200h, la date de l'enregistrement à transférer (code 16).

A noter que demander un nouvel enregistrement revient à arrêter les transferts qui sont en cours. Ce n'est pas le cas pour une demande de transfert de la zone d'identification.

2200h/2400h

B15	B14	B13	B12	B11	B10	B09	B08	B07	B06	B05	B04	B03	B02	B01	B00
0	0	0	0	0	0	0	0	Α	Α	Α	Α	Α	Α	Α	Α
0	0	0	0	М	М	М	М	0	0	0	J	J	J	J	J
0	0	0	Н	Н	Н	Н	Н	0	0	mn	mn	mn	mn	mn	mn
ms															

A - 1 octet pour les années : variation de 0 à 99 années.

Le superviseur doit s'assurer que l'année 00 est supérieure à 99.

M - 1 octet pour les mois : variation de 1 à 12.
J - 1 octet pour les jours : variation de 1 à 31.

H - 1 octet pour les heures : variation de 0 à 23.

mn - 1 octet pour les minutes : variation de 0 à 59.

ms - 2 octets pour les millisecondes : variation de 0 à 59999.

Trame de réponse

Lecture de chaque portion d'enregistrement de fichiers de configuration et de données par une trame de lecture (code 3) de 125 mots à partir de l'adresse 2300h.

2300h/2500h

B15	B14	B13	B12	B11	B10	B09	B08	B07	B06	B05	B04	B03	B02	B01	B00
Numéro d'échange							(Nom dans la		octets e de do		s			
Zone de données															

La lecture doit toujours commencer sur le premier mot de la zone d'adresse (toute autre adresse provoque une réponse d'exception "adresse incorrecte"). Les fichiers de configuration et de données sont lus dans leur intégralité dans le Sepam. Ils sont transférés de façon contigüe.

Si le superviseur demande plus d'échanges que nécessaire, le numéro d'échange reste inchangé et le nombre d'octets utiles est forcé à 0. Pour garantir les transferts de données, il est nécessaire de prévoir un temps de retour de l'ordre de 500 ms entre chaque lecture en 2300h.

Le premier mot transmis est un mot d'échange. Ce mot d'échange comporte deux champs :

- l'octet de poids fort contient le numéro d'échange. Celui-ci est initialisé à zéro après une mise sous tension. Il est incrémenté de 1 par le Sepam, à chaque transfert réussi. Lorsqu'il atteint la valeur FFH, il repasse automatiquement à zéro
- l'octet de poids faible contient le nombre d'octets utiles dans la zone de données. Celui-ci est initialisé à zéro après une mise sous tension et doit être différent de FFh. Le mot d'échange peut également prendre les valeurs suivantes :
- xxyy : le nombre d'octets utiles dans la zone de données yy doit être différent de FFh
- 0000h : aucune "trame de demande de lecture" n'a encore été formulée. C'est particulièrement le cas à la mise sous tension du Sepam. Les autres mots ne sont pas significatifs.
- FFFFh la "trame de demande" a été prise en compte, mais le résultat dans la zone de réponse n'est pas encore disponible.

Il est nécessaire de faire une nouvelle lecture de la trame de réponse.

Les autres mots ne sont pas significatifs.

Les mots qui suivent le mot d'échange constituent la zone de données. Comme les fichiers de configuration et de données sont contigus, une trame peut contenir la fin du fichier de configuration et le début du fichier de données d'un enregistrement.

A charge au logiciel de superviseur de reconstruire les fichiers en fonction du nombre d'octets utiles transmis et la taille des fichiers indiquées dans la zone d'identification.

Acquittement d'un transfert

Pour avertir le Sepam d'une bonne réception d'un bloc d'enregistrement qu'il vient de lire, le superviseur doit écrire dans le champ "numéro d'échange" le numéro du dernier échange qu'il a effectué et mettre à zéro le champ "nombre d'octets utiles dans la zone de données" du mot d'échange.

Le Sepam n'incrémente le numéro d'échange que si de nouvelles rafales d'acquisition sont présentes.

Relecture de la zone d'identification

Pour s'assurer que l'enregistrement n'a pas été modifié, pendant son transfert par un nouvel enregistrement, le superviseur relit le contenu de la zone d'identification et s'assure que la date de l'enregistrement rapatrié est toujours présente.

U

6/1

Sommaire

Consignes de sécurité Avant de commencer	6/2 6/2
Précautions	6/3
Identification du matériel	6/4
Unité de base Dimensions	6/6
Unité de base Montage Poste sans alimentation auxiliaire Poste avec alimentation auxiliaire Raccordement des entrées courant et tension Variantes de raccordement des entrées courant phase Variantes de raccordement des entrées courant résiduel Variantes de raccordement des entrées tension	6/7 6/8 6/9 6/12 6/13 6/14
Transformateurs tension	6/15
Transformateurs de courant 1 A/5 A	6/16
Tores homopolaires CSH120 et CSH200	6/17
Tore homopolaire adaptateur CSH30	6/19
Adaptateur tore ACE990	6/21
Modules MES114	6/23
Module sortie analogique MSA141	6/26
Interface réseau RS 485 2 fils ACE949-2	6/27
Interface réseau RS 485 4 fils ACE959	6/28
Interface fibre optique ACE937	6/29

Consignes de sécurité Avant de commencer

Cette page présente les consignes de sécurité importantes qui doivent rigoureusement être suivies avant toute tentative d'installer ou de réparer l'équipement électrique, ou d'en assurer l'entretien. Lisez attentivement les consignes de sécurité décrites ci-dessous.

A DANGER

RISQUES D'ÉLECTROCUTION, D'ARC ELECTRIQUE, DE BRÛLURE OU D'EXPLOSION

- L'installation de cet équipement doit être confiée exclusivement à des personnes qualifiées, qui ont pris connaissance de toutes les instructions d'installation
- Ne travaillez JAMAIS seul.
- Coupez toute alimentation avant de travailler sur cet équipement.
- Utilisez toujours un dispositif de détection de tension adéquat pour vérifier que l'alimentation est coupée.
- Avant de procéder à des inspections visuelles, des essais ou des interventions de maintenance sur cet équipement, débranchez toutes les sources de courant et de tension. Partez du principe que tous les circuits sont sous tension jusqu'à ce qu'ils aient été mis complètement hors tension, soumis à des essais et étiquetés. Accordez une attention particulière à la conception du circuit d'alimentation. Tenez compte de toutes les sources d'alimentation et en particulier aux possibilités d'alimentation extérieure à la cellule où est installé l'équipement.
- Prenez garde aux dangers éventuels, portez un équipement protecteur individuel, inspectez soigneusement la zone de travail en recherchant les outils et objets qui peuvent avoir été laissés à l'intérieur de l'équipement.
- Le bon fonctionnement de cet équipement dépend d'une manipulation, d'une installation et d'une utilisation correctes. Le non-respect des consignes de base d'installation peut entraîner des blessures ainsi que des dommages de l'équipement électrique ou de tout autre bien.
- La manipulation de ce produit requiert des compétences relatives à la protection des réseaux électriques. Seules les personnes avec ces compétences sont autorisées à configurer et régler ce produit.
- Avant de procéder à un essai de rigidité diélectrique ou à un essai d'isolement sur la cellule dans laquelle est installé le Sepam, débranchez tous les fils raccordés au Sepam. Les essais sous une tension élevée peuvent endommager les composants électroniques du Sepam.

Le non-respect de ces instructions entraînera la mort ou des blessures graves. SEPED303006FR

Installation

Précautions

Nous vous recommandons de suivre les instructions données dans ce document pour une installation rapide et correcte de votre Sepam :

- identification du matériel
- montage
- raccordements des entrées courant, tension, sondes
- raccordement de l'alimentation
- vérification avant mise sous tension

Manutention, transport et stockage

Sepam dans son conditionnement d'origine

Transport:

Sepam peut être expédié vers toutes les destinations sans précaution supplémentaire par tous les moyens usuels de transport.

Manutention :

Sepam peut être manipulé sans soin particulier et même supporter une chute à hauteur d'homme.

Stockage:

Sepam peut être stocké dans son conditionnement d'origine dans un local approprié pendant plusieurs années :

- température comprise entre -25 °C et +70 °C (-13 °F et +158 °F)
- humidité ≤ 90 %.

Un contrôle périodique annuel de l'environnement et de l'état du conditionnement est recommandé.

Une mise sous tension pendant une durée d'une heure est requise :

- tous les 5 ans pour une température de stockage < 30 ° C (86 ° F)
- tous les 3 ans pour une température de stockage ≥ 30 ° C (86 ° F)
- tous les 2 ans pour une température de stockage ≥ 50 ° C (122 ° F)

Après déballage, Sepam doit être mis sous tension dans les meilleurs délais.

Si la durée de stockage a été supérieure à 2 ans, il est conseillé lors de la mise en service d'activer chacun des relais de sortie 5 fois (voir procédure dans le chapitre "Mise en service - Contrôle du raccordement des sorties logiques", page 8/16)

Sepam installé en cellule

Transport:

Sepam peut être transporté par tous les moyens usuels dans les conditions habituelles pratiquées pour les cellules. Il faut tenir compte des conditions de stockage pour un transport de longue durée.

Manutention:

En cas de chute d'une cellule vérifier le bon état du Sepam par un contrôle visuel et une mise sous tension.

Stockage:

Maintenir l'emballage de protection de la cellule le plus longtemps possible. Sepam, comme toute unité électronique, ne doit pas être stocké dans un milieu humide pour une durée supérieure à 1 mois. Sepam doit être mis sous tension le plus rapidement possible. A défaut, le système de réchauffage de la cellule doit être activé.

Environnement du Sepam installé

Fonctionnement en atmosphère humide

Le couple température humidité relative doit être compatible avec les caractéristiques de tenue à l'environnement de l'unité.

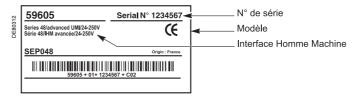
Si les conditions d'utilisation sont hors de la zone normale, il convient de prendre des dispositions de mise en œuvre telle que la climatisation du local.

Fonctionnement en atmosphère polluée

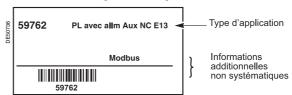
Une atmosphère industrielle contaminée peut entraîner une corrosion des dispositifs électroniques (telle que présence de chlore, d'acide fluorhydrique, soufre, solvants, ...), dans ce cas il convient de prendre des dispositions de mise en œuvre pour maîtriser l'environnement (tels que locaux fermés et pressurisés avec

L'influence de la corrosion sur Sepam a été testé suivant la norme CEI 60068-2-60. Sepam est certifié conforme au niveau C dans les conditions d'essai suivantes :

- \blacksquare essai 2 gaz : 21 jours, 25 °C (77 °F), 75 % d'humidité relative, 0,5 ppm $\rm H_2S,$ 1 ppm $\rm SO_2$
- \blacksquare essai 4 gaz : 21 jours, 25 °C (77 °F), 75 % d'humidité relative, 0,01 ppm H $_2$ S, 0,2 ppm SO $_2$, 0,2 ppm NO $_2$, 0,01 ppm Cl $_2$.

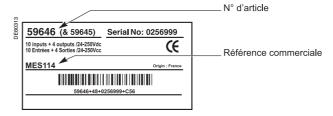

Identification

Chaque Sepam est livré dans un conditionnement unitaire qui comprend l'unité de base et son connecteur.


Les autres accessoires optionnels tels que modules, connecteurs entrée courant ou tension et cordons sont livrés dans des conditionnements séparés.

Pour identifier un Sepam il faut vérifier les 2 étiquettes sur le flasque droit de l'unité de base qui définissent les aspects fonctionnels et matériels du produit.

■ référence et désignation du matériel


■ référence et désignation du logiciel

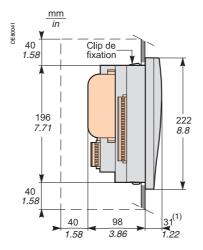
Identification des accessoires

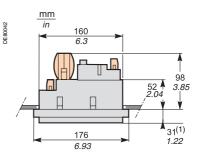
Les accessoires tels que modules optionnels, connecteurs courant ou tension et câbles de liaison sont livrés dans des conditionnements séparés, identifiés par une étiquette.

■ exemple d'étiquette d'identification d'un module MES114 :

Identification du matériel

Liste des références Sepam série 48


	orereness sepam serie is
Référence	Désignation
59605	Unité de base avec IHM avancée, alimentation 24-250 V CC et 100-240 V CA
59615	Langue d'exploitation Anglais/Français
59630	CCA630 connecteur capteurs de courant TC 1 A/5 A
59633	CAT648 adaptateur TT et percuteur
59634	CSH30 tore d'adaptation pour entrée I0
59635	CSH120 capteur de courant résiduel, diamètre 120 mm
59636	CSH200 capteur de courant résiduel, diamètre 200 mm
59642	ACE949-2 interface réseau RS 485 2 fils
59643	ACE959 interface réseau RS 485 4 fils
59644	ACE937 interface fibre optique
59646	MES114 module 10 entrées + 4 sorties / 24-250 V CC
59647	MSA141 module 1 sortie analogique
59648	ACE909-2 convertisseur RS 485/RS 232
59649	ACE919 CA adaptateur RS 485/RS 485 (alimentation CA)
59650	ACE919 CC adaptateur RS 485/RS 485 (alimentation CC)
59656	CCA626 connecteur 6 points à vis
59660	CCA770 câble de liaison module déporté, L = 0,6 m
59661	CCA772 câble de liaison module déporté, L = 2 m
59662	CCA774 câble de liaison module déporté, L = 4 m
59663	CCA612 câble de liaison interface réseau communication, L = 3 m
59664	CCA783 câble de liaison PC
59668	CCA620 connecteur 20 points à vis
59670	AMT840 support de montage
59672	ACE990 adaptateur tore pour entrée I0
59673	Kit SFT2848 logiciel de configuration PC, avec câble CCA783
59676	Kit 2640 2 jeux de connecteurs de rechange pour MES114
59760	Application E11
56761	Application E12
59762	Application E13
59763	Application E14
59764	Application E15
59765	Application E16
59766	Application E22
59767	Application E23
59768	Application E32
59769	Application E33


Unité de base Dimensions

mm in 2222 8.8

Sepam vu de face.

Dimensions

Sepam avec IHM avancée et MES114, encastré en face avant.

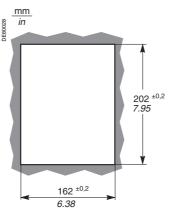
(1) Avec IHM de base : 23 mm (0.91 in).

Sepam avec IHM avancée et MES114, encastré en face avant.

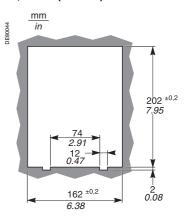
_____Périmètre libre pour montage et câblage Sepam.

Découpes

La précision de la découpe doit être respectée pour assurer la bonne tenue.


▲ ATTENTION

RISQUE DE COUPURE

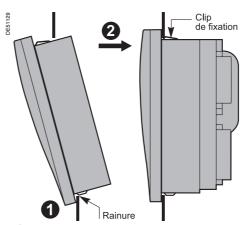

Ebarbez les tôles découpées pour les rendre non coupantes.

Le non-respect de cette instruction peut entraîner des blessures graves.

Pour tôle support d'épaisseur entre 1,5 mm (0.059 in) et 3 mm (0.12 in)

Pour tôle support d'épaisseur 3,17 mm (0.125 in)

Unité de base Montage


A DANGER

RISQUES D'ÉLECTROCUTION, D'ARC ELECTRIQUE OU DE BRULURES

- L'installation de cet équipement doit être confiée exclusivement à des personnes qualifiées, qui ont pris connaissance de toutes les instructions d'installation.
- Ne travaillez JAMAIS seul.
- Coupez toute alimentation avant de travailler sur cet équipement. Tenez compte de toutes les sources d'alimentation et en particulier aux possibilités d'alimentation extérieure à la cellule où est installé l'équipement.
- Utilisez toujours un dispositif de détection de tension adéquat pour vérifier que l'alimentation est coupée.

Le non-respect de ces instructions entraînera la mort ou des blessures graves.

Le Sepam est fixé simplement par encastrement et clips sans dispositif supplémentaire vissé.

- ① Présenter le produit comme indiqué en veillant à ce que la tôle support soit correctement engagée dans la rainure en partie basse.
- 2 Basculer le produit et appuyer sur la partie haute pour le fixer par les clips.

Poste sans alimentation auxiliaire Application E11

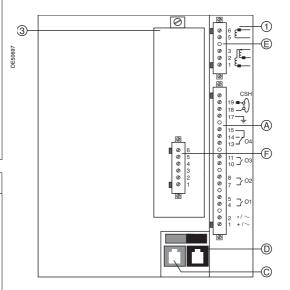
▲ DANGER

RISQUES D'ÉLECTROCUTION, D'ARC ELECTRIQUE OU DE BRULURES

- L'installation de cet équipement doit être confiée exclusivement à des personnes qualifiées, qui ont pris connaissance de toutes les instructions d'installation.
- Ne travaillez JAMAIS seul.
- Coupez toute alimentation avant de travailler sur cet équipement. Tenez compte de toutes les sources d'alimentation et en particulier aux possibilités d'alimentation extérieure à la cellule où est installé l'équipement.
- Utilisez toujours un dispositif de détection de tension adéquat pour vérifier que l'alimentation est coupée.
- Commencez par raccorder l'équipement à la terre de protection et à la terre fonctionnelle.
- Vissez fermement toutes les bornes, même celles qui ne sont pas utilisées.

Le non-respect de ces instructions entraînera la mort ou des blessures gravesures graves.

A ATTENTION


PERTE DE PROTECTION OU RISQUE DE DECLENCHEMENT INTEMPESTIF

Si le Sepam n'est plus alimenté ou s'il est en position de repli, les fonctions de protection ne sont plus actives et tous les relais de sortie du Sepam sont au repos. Vérifiez que ce mode de fonctionnement et que le câblage du relais chien de garde sont compatibles avec votre installation.

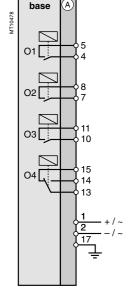
Le non-respect de cette instruction peut entraîner des dommages matériels et une mise hors tension intempestive de l'installation électrique.

Composition de Sepam

- unité de base (1)
- □ (A) connecteur à vis :
- alimentation,
- relais de sortie,
- entrée CSH30, 120, 200 ou ACE990.
- □ (C) connection liaison module communication (vert)
- □ □ connection liaison déportée inter modules (noir)
- □ (Ē) connection entrée tension, connecteur à vis représenté (CCA626)
- module adaptateur TT et percuteur (CAT648) ③ et son connecteur (F).

Les raccordements de Sepam sont faits sur des connecteurs amovibles situés sur la face arrière. Tous les connecteurs sont verrouillables par vissage.

Les entrées mesure de tension sur le connecteur (É) et alimentation sur le connecteur (A) sont précables 303006 pla adaptateur TT et percuteur (CAT648).


- sans embout :
- □ 1 fil de section 0,2 à 2,5 mm² maximum (\geq AWG 24-12) ou 2 fils de section de 0,2 à 1 mm² maximum (\geq AWG 24-16)
- □ longueur de dénudage : 8 à 10 mm
- avec embout :
- $\hfill\Box$ câblage préconisé avec embout Telemecanique :
- DZ5CE015D pour 1 fil 1,5 mm²
- DZ5CE025D pour 1 fil 2,5 mm²
- AZ5DE010D pour 2 fils 1 mm²
- □ longueur du tube : 8,2 mm
- □ longueur de dénudage : 8 mm.

Caractéristiques des 4 sorties à relais de l'unité de base O1, O2, O3, O4.

- O1 et O2 sont 2 sorties de commande, utilisées par la fonction de commande de l'appareil de coupure pour :
- □ O1 : déclenchement de l'appareil de coupure,
- □ O2 : verrouillage de l'enclenchement de l'appareil de coupure.
- O3 est une sortie de commande non préaffectée.
- O4 est une sortie de signalisation non préaffectée. Elle peut être affectée à la fonction chien de garde.

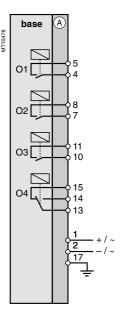
La borne 15 du RAH411E (Statimax) ne doit pas être connectée. Dans le cas d'un retrofit le fil raccordé à cette borne doit être débranché.

Poste avec alimentation auxiliaire Applications E12, E13, E14, E15, E16, E22, E23, E32, E33

A DANGER

RISQUES D'ÉLECTROCUTION, D'ARC ELECTRIQUE OU DE BRULURES

- L'installation de cet équipement doit être confiée exclusivement à des personnes qualifiées, qui ont pris connaissance de toutes les instructions d'installation.
- Ne travaillez JAMAIS seul.
- Coupez toute alimentation avant de travailler sur cet équipement. Tenez compte de toutes les sources d'alimentation et en particulier aux possibilités d'alimentation extérieure à la cellule où est installé l'équipement.
- Utilisez toujours un dispositif de détection de tension adéquat pour vérifier que l'alimentation est coupée.
- Commencez par raccorder l'équipement à la terre de protection et à la terre fonctionnelle.
- Vissez fermement toutes les bornes, même celles qui ne sont pas utilisées.

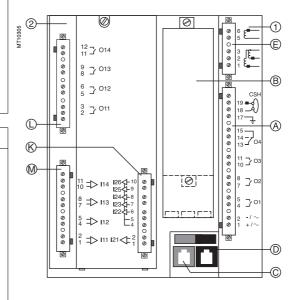

Le non-respect de ces instructions entraînera la mort ou des blessures gravesures graves.

A ATTENTION

PERTE DE PROTECTION OU RISQUE DE DECLENCHEMENT INTEMPESTIF

Si le Sepam n'est plus alimenté ou s'il est en position de repli, les fonctions de protection ne sont plus actives et tous les relais de sortie du Sepam sont au repos. Vérifiez que ce mode de fonctionnement et que le câblage du relais chien de garde sont compatibles avec votre installation.

Le non-respect de cette instruction peut entraîner des dommages matériels et une mise hors tension intempestive de l'installation électrique.



Composition de Sepam

- unité de base (1)
- □ (A) connecteur unité de base :
- alimentation.
- relais de sortie,
- entrée CSH30, 120, 200 ou ACE990.

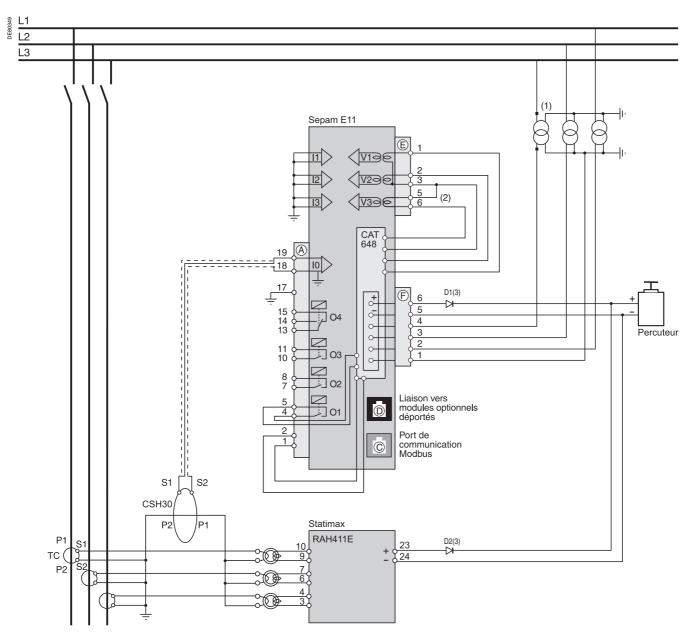
Connecteur à vis représenté (CCA620)

- ☐ (B) connecteur entrée courant TC 1/5 A (CCA630)
- © connection liaison module communication (vert)
- □ D connection liaison déportée inter modules (noir)
- □ (Ē) connection entrée tension, connecteur à vis représenté (CCA626)
- module optionnel d'entrées/sorties ② (MES114)
- □ (L) (M) connecteurs module MES114
- □ (K) connecteur module MES114.

Raccordement de l'unité de base

Les raccordements de Sepam sont faits sur des connecteurs amovibles situés sur la face arrière. Tous les connecteurs sont verrouillables par vissage.

Câblage des connecteurs CCA620 et CCA626 :

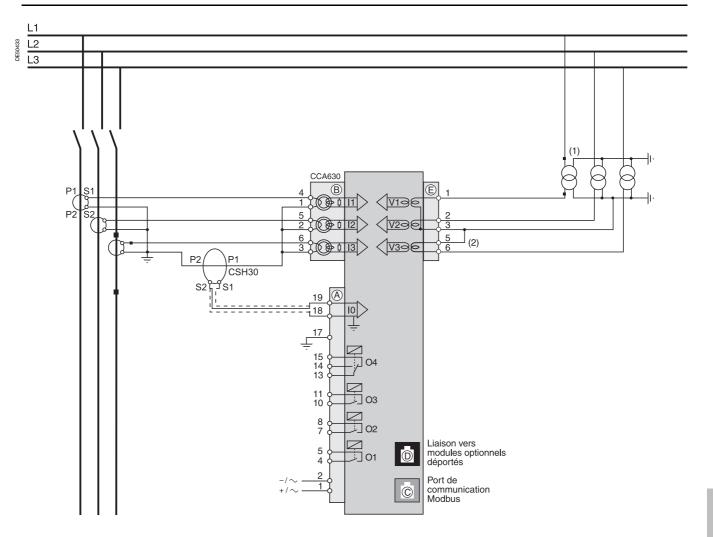

- sans embout
- \square 1 fil de section 0,2 à 2,5 mm² maximum (\ge AWG 24-12) ou 2 fils de section de 0,2 à 1 mm² maximum (\ge AWG 24-16)
- □ longueur de dénudage : 8 à 10 mm
- avec embout :
- □ câblage préconisé avec embout Telemecanique :
- DZ5CE015D pour 1 fil 1,5 mm²
- DZ5CE025D pour 1 fil 2,5 mm²
- AZ5DE010D pour 2 fils 1 mm²
- □ longueur du tube : 8,2 mm
- □ longueur de dénudage : 8 mm.

Caractéristiques des 4 sorties à relais de l'unité de base O1, O2, O3, O4.

- O1 et O2 sont 2 sorties de commande, utilisées par la fonction de commande de l'appareil de coupure pour :
- □ O1 : déclenchement de l'appareil de coupure
- □ O2 : verrouillage de l'enclenchement de l'appareil de coupure
- O3 est une sortie de commande non préaffectée
- O4 est une sortie de signalisation non préaffectée. Elle peut être affectée à la fonction chien de garde.

Raccordement des entrées courant et tension

Poste sans alimentation auxiliaire


- (1) Ce raccordement permet le calcul de la tension résiduelle.
- (2) Accessoire de pontage des bornes 3 et 5 fournies avec connecteur CCA626.
- (3) Diodes D1 et D2 : 2 diodes type 1N4007 1000 V 1 A

La borne 15 du RAH411E (Statimax) ne doit pas être connectée. Dans le cas d'un retrofit le fil raccordé à cette borne doit être débranché.

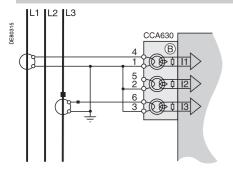
Raccordement des entrées courant et tension

Poste avec alimentation auxiliaire

- (1) Ce raccordement permet le calcul de la tension résiduelle. (2) Accessoire de pontage des bornes 3 et 5 fournies avec connecteur CCA626.

Variantes de raccordement des entrées courant phase

Variante n° 1 : mesure des courants phase par 3 TC 1 A ou 5 A (raccordement standard)


Raccordement de 3 TC 1 A ou 5 A sur le connecteur CCA630.

La mesure des 3 courants phase permet le calcul du courant résiduel.

Applications E12, E13

Nota 1 : schéma autorisé d'emploi EDF pour application E12. Nota 2 : pour l'application E13, voir nota variante n°3 (page 6/13).

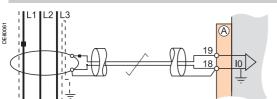
Variante n° 2 : mesure des courants phase par 2 TC 1 A ou 5 A

Raccordement de 2 TC 1 A ou 5 A sur le connecteur CCA630.

La mesure des courants des phases 1 et 3 est suffisante pour assurer toutes les fonctions de protection basées sur le courant phase.

Ce montage ne permet pas le calcul du courant résiduel.

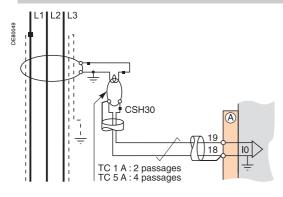
Applications E12, E13


Variantes de raccordement des entrées courant résiduel

Variante n° 1 : calcul du courant résiduel par somme des 3 courants phase

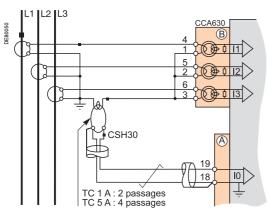
Le courant résiduel est obtenu par somme vectorielle des 3 courants phase I1, I2 et I3, mesurés par 3 TC 1 A ou 5 A.

Voir schémas de raccordement des entrées courant.

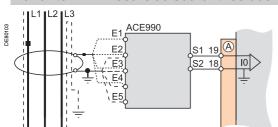

Variante n° 2 : mesure du courant résiduel par tore homopolaire CSH120 ou CSH200 (raccordement standard)

Montage recommandé pour la protection des réseaux à neutre isolé ou compensé, devant détecter des courants de défaut de très faible valeur.

Plage de réglage de 0,1 ln0 à 15 ln0, avec ln0 = 2 A ou 5 A ou 20 A selon paramétrage.


Variante n° 3 : mesure du courant résiduel par TC 1 A ou 5 A et adaptateur tore CSH30

Le tore adaptateur CSH30 permet le raccordement à Sepam de TC 1 A ou 5 A utilisés pour la mesure du courant résiduel.


- raccordement de l'adaptateur tore CSH30 sur TC 1 A : effectuer 2 passages au primaire du CSH
- raccordement de l'adaptateur tore CSH30 sur TC 5 A : effectuer 4 passages au primaire du CSH
- la sensibilité peut être multipliée par 10 en utilisant le paramétrage ln0 = ln/10.

Plage de réglage de 0,1 ln0 à 15 ln0, ou 0,01 ln0 à 1,5 ln0 avec ln0 = courant primaire TC.

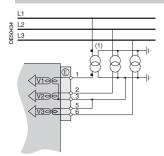
Nota: schémas autorisés d'emploi EDF pour application E13.

Variante n° 4 : mesure du courant résiduel par tore homopolaire de rapport 1/n (n compris entre 50 et 1500)

L'ACE990 sert d'adaptateur entre un tore homopolaire MT de rapport 1/n (50 < n < 1500) et l'entrée de courant résiduel du Sepam.

Ce montage permet de conserver des tores homopolaires existants sur l'installation.

Plage de réglage de 0,1 ln0 à 15 ln0, avec ln0 = k.n,

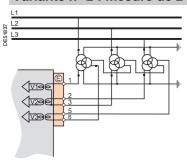

- où n = nombre de spires du tore homopolaire
- et k = coefficient à déterminer en fonction du câblage de l'ACE990 et de la plage de paramétrage utilisée par Sepam, parmi 20 valeurs discrètes de 0,00578 à 0.26316.

Variantes de raccordement des entrées tension

Le raccordement des secondaires des transformateurs de tension phase et résiduelle se fait directement sur le connecteur repère (E).

Les 3 transformateurs d'adaptation et d'isolation sont intégrés dans l'unité de base des Sepam série 48.

Variante n° 1 : mesure des 3 tensions simples (raccordement standard)

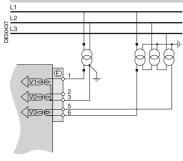


Paramétrage capteurs tension phase 3V Paramétrage capteur tension résiduelle Somme 3V Tensions mesurées V1, V2, V3

Valeurs calculées U21, U32, U13, V0, Vd, Vi, f

Nota: Dans le cas de poste sans alimentation auxiliaire, le raccordement se fait via le module adaptateur TT et percuteur.

Variante n° 2 : mesure de 2 tensions composées et de la tension résiduelle



Paramétrage capteurs tension phase Paramétrage capteur tension résiduelle Tensions mesurées Valeurs calculées

U21, U32 TP externe U21, U32, V0 U13, V1, V2, V3, Vd, Vi, f

Nota: Raccordement non possible si poste sans alimentation auxiliaire.

Variante n° 3 : mesure de 1 tension composée et de la tension résiduelle

Paramétrage capteurs tension phase Paramétrage capteur tension résiduelle Tensions mesurées

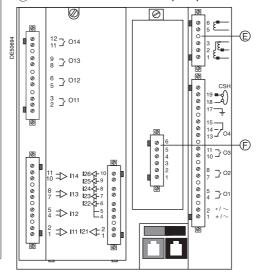
Valeurs calculées

U21 TP externe U21, V0

Nota: Raccordement non possible si poste sans alimentation auxiliaire.

Transformateurs tension

▲ DANGER


RISQUES D'ÉLECTROCUTION, D'ARC ELECTRIQUE OU DE BRULURES

- L'installation de cet équipement doit être confiée exclusivement à des personnes qualifiées, qui ont pris connaissance de toutes les instructions d'installation et contrôlé les caractéristiques techniques de l'équipement.
- Ne travaillez JAMAIS seul.
- Coupez toute alimentation avant de travailler sur cet équipement. Tenez compte de toutes les sources d'alimentation et en particulier aux possibilités d'alimentation extérieure à la cellule où est installé l'équipement.
- Utilisez toujours un dispositif de détection de tension adéquat pour vérifier que l'alimentation est coupée.
- Commencez par raccorder l'équipement à la terre de protection et à la terre fonctionnelle.
- Vissez fermement toutes les bornes, même celles qui ne sont pas utilisées.

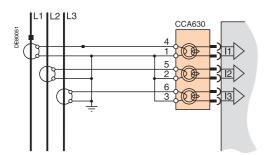
Le non-respect de ces instructions entraînera la mort ou des blessures graves.

Le raccordement des secondaires des transformateurs de tension phase et résiduelle se fait sur le connecteur repère :

- (E) dans le cas d'une installation pour poste avec alimentation auxiliaire
- $\stackrel{\smile}{\mathbb{F}}$ dans le cas d'une installation pour poste sans alimentation auxiliaire.

Raccordements

Les raccordements sont effectués sur les connecteurs accessibles en face arrière à vis (CCA626).


Câblage du connecteur CCA626 :

- sans embout :
- □ 1 fil de section 0,2 à 2,5 mm² maximum (> AWG 24-12) ou 2 fils de section de 0,2 à 1 mm² maximum (> AWG 24-16)
- □ longueur de dénudage : 8 à 10 mm
- avec embout :
- □ câblage préconisé avec embout Telemecanique :
- DZ5CE015D pour 1 fil 1,5 mm²
- DZ5CE025D pour 1 fil 2,5 mm²
- AZ5DE010D pour 2 fils 1 mm²
- □ longueur du tube : 8,2 mm
- □ longueur du dénudage : 8 mm.

Schneider Electric

Transformateurs de courant 1 A/5 A

Protection pour poste avec alimentation auxiliaire

Connecteur CCA630

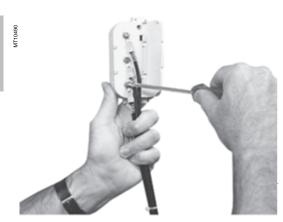
Fonction

Le raccordement de 3 transformateurs de courant phase 1 A ou 5 A se fait sur le connecteur CCA630 monté en face arrière de Sepam.

Le connecteur CCA630 contient des tores adaptateurs à primaire traversant, qui réalisent l'adaptation et l'isolation entre les circuits 1 A ou 5 A et Sepam pour la mesure des courants phase.

Il peut être déconnecté en charge car sa déconnexion n'ouvre pas le circuit secondaire des TC.

A DANGER


RISQUES D'ÉLECTROCUTION, D'ARC ELECTRIQUE OU DE BRULURES

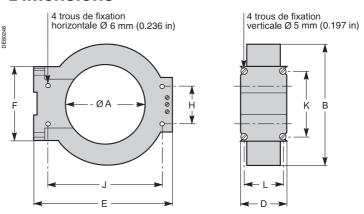
- L'installation de cet équipement doit être confiée exclusivement à des personnes qualifiées, qui ont pris connaissance de toutes les instructions d'installation et contrôlé les caractéristiques techniques de l'équipement.
- Ne travaillez JAMAIS seul.
- Coupez toute alimentation avant de travailler sur cet équipement. Tenez compte de toutes les sources d'alimentation et en particulier aux possibilités d'alimentation extérieure à la cellule où est installé l'équipement.
- Utilisez toujours un dispositif de détection de tension adéquat pour vérifier que l'alimentation est coupée.
- Pour déconnecter les entrées courant du Sepam, retirez le connecteur CCA630 sans déconnecter les fils qui y sont raccordés. Le connecteur CCA630 assure la continuité des circuits secondaires des transformateurs de courant.
- Avant de déconnecter les fils raccordés au connecteur CCA630, courtcircuitez les circuits secondaires des transformateurs de courant.

Le non-respect de ces instructions entraînera la mort ou des blessures graves.

- 1. Ouvrir les 2 caches latéraux pour accéder aux bornes de raccordement. Ces caches peuvent être retirés si nécessaire afin de faciliter le câblage. Si tel est le cas, les remettre en place après le câblage.
- 2. Retirer si nécessaire la barrette de pontage qui relie les bornes 1, 2 et 3. Cette barrette est fournie avec le CCA630.
- 3. Raccorder les câbles à l'aide de cosses à œil de 4 mm (0.16 in) et veiller au bon serrage des 6 vis garantissant la fermeture des circuits secondaires des TC. Le connecteur accepte du câble de section 1,5 à 6 mm² (AWG 16-10).
- Refermer les caches latéraux.
- 5. Positionner le connecteur sur la prise SUB-D 9 broches de la face arrière (Repère $\widehat{\mathbb{R}}$).
- 6. Serrer les 2 vis de fixation du connecteur sur la face arrière du Sepam.

Tores homopolaires CSH120 et CSH200

Tores homopolaires CSH120 et CSH200.


Fonction

Les tores homopolaires spécifiques CSH120, CSH200 permettent la mesure directe du courant résiduel. Ils diffèrent uniquement par leur diamètre. Leur isolement basse tension n'autorise leur emploi que sur des câbles.

Caractéristiques

		CSH120	CSH200		
Diamètre intérieur		120 mm (4.75 in)	196 mm (7.72 in)		
Masse		0,6 kg (1.32 lb)	1,4 kg (3.09 lb)		
Précision	1 tore	±5 % à 20 °C (68 °F)			
		±6 % max. de -25 °C à 70 °C (-13 °F à +158 °F)			
	2 tores en parallèle	-	±10 %		
Rapport de transformation		1/470			
Intensité maximale admissible	1 tore	20 kA - 1 s			
	2 tores en parallèle	-	6 kA - 1 s		
Température de fonctionnement		- 25 °C à +70 °C (-13 °F à +158 °F)			
Température de stockage		- 40 °C à +85 °C (-40 °F à +185 °F)			

Dimensions

Côtes	Α	В	D	E	F	Н	J	K	L
CSH120	120	164	44	190	80	40	166	65	35
(in)	(4.75)	(6.46)	(1.73)	(7.48)	(3.15)	(1.57)	(6.54)	(2.56)	(1.38)
CSH200	196	256	46	274	120	60	254	104	37
(in)	(7.72)	(10.1)	(1.81)	(10.8)	(4.72)	(2.36)	(10)	(4.09)	(1.46)

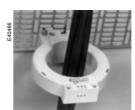
Tores homopolaires CSH120 et CSH200

DANGER

RISQUES D'ÉLECTROCUTION, D'ARC **ELECTRIQUE OU DE BRULURES**

- L'installation de cet équipement doit être confiée exclusivement à des personnes qualifiées, qui ont pris connaissance de toutes les instructions d'installation et contrôlé les caractéristiques techniques de l'équipement.
- Ne travaillez JAMAIS seul.
- Coupez toute alimentation avant de travailler sur cet équipement. Tenez compte de toutes les sources d'alimentation et en particulier aux possibilités d'alimentation extérieure à la cellule où est installé l'équipement.
- Utilisez toujours un dispositif de détection de tension adéquat pour vérifier que l'alimentation est coupée.
- Seuls les tores homopolaires CSH120 et CSH200 peuvent être utilisés pour la mesure directe du courant résiduel. Les autres capteurs de courant résiduel nécessitent l'usage d'un équipement intermédiaire, CSH30 ou ACE990.
- Installez les tores homopolaires sur des câbles isolés.
- Les câbles de tension nominale supérieure à 1000 V doivent avoir en plus un écran relié à la

Le non-respect de ces instructions entraînera la mort ou des blessures graves.


Montage

Grouper le(s) câble(s) MT au centre du tore. Maintenir le câble à l'aide de frettes en matériau non conducteur.

Ne pas oublier de repasser à l'intérieur du tore, le câble de mise à la terre de l'écran des 3 câbles moyenne tension

Montage sur les câbles MT

Montage sur tôle

A ATTENTION

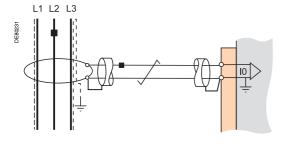
RISQUE DE NON FONCTIONNEMENT

Ne pas raccorder le circuit secondaire des tores homopolaires CSH à la terre.

Cette connexion est réalisée dans le Sepam.

Le non-respect de cette instruction peut entraîner un mauvais fonctionnement du Sepam.

Raccordement sur Sepam série 48


Raccordement

Sur entrée courant résiduel I0, sur connecteur (A), bornes 19 et 18 (blindage).

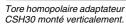
- câble gainé blindé par tresse de cuivre étamée
- section du câble mini 0,93 mm² (AWG 18)
- résistance linéique < 100 m Ω /m (30.5 m Ω /ft)
- tenue diélectrique mini: 1000 V (700 Veff).
- connecter le blindage du câble de raccordement par une liaison la plus courte possible à Sepam.
- plaquer le câble contre les masses métalliques de la cellule.

La mise à la masse du blindage du câble de raccordement est réalisée dans Sepam. Ne réaliser aucune autre mise à la masse de ce câble.

La résistance maximum de la filerie de raccordement à Sepam ne doit pas dépasser 4 Ω (soit 20 m maximum pour 100 m Ω /m ou 66 ft maximum pour 30.5 m Ω /ft).

L1 L2 L1 L2 L3

Raccordement de 2 tores CSH200 en parallèle


Il est possible de connecter 2 tores CSH200 en parallèle si les câbles ne passent pas dans un seul tore, en suivant les recommandations suivantes :

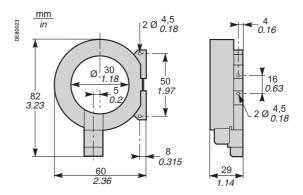
- Placez un tore par jeu de câbles.
- Respectez le sens de câblage.
- L'intensité maximale admissible au primaire est limitée à 6 kA 1 s pour l'ensemble des câbles.

6

Tore homopolaire adaptateur CSH30

E40468

Tore homopolaire adaptateur CSH30 monté horizontalement.

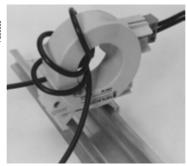

Fonction

Le tore CSH30 est utilisé comme adaptateur lorsque la mesure du courant résiduel est effectuée par des transformateurs de courant 1 A ou 5 A.

Caractéristiques

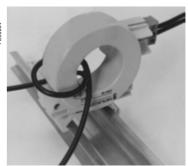
Masse	0,12 kg (0.265 lb)
	Sur rail DIN symétrique En position verticale ou horizontale

Dimensions


Tore homopolaire adaptateur CSH30

Raccordement

L'adaptation au type de transformateur de courant 1 A ou 5 A est réalisé par des spires de la filerie secondaire dans le tore CSH30 :


- calibre 5 A 4 passages
- calibre 1 A 2 passages.

Raccordement sur secondaire 5 A

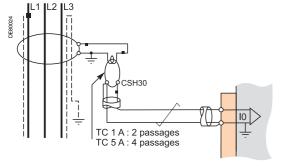
- 1. Effectuer le raccordement sur le connecteur.
- 2. Passer le fil du secondaire du transformateur 4 fois dans le tore CSH30.

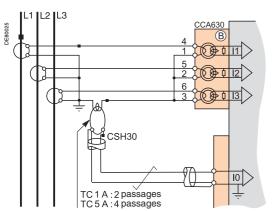
Raccordement sur secondaire 1 A

- 1. Effectuer le raccordement sur le connecteur.
- 2.Passer le fil du secondaire du transformateur 2 fois dans le tore CSH30.

Raccordement sur Sepam série 48

Sur entrée courant résiduel I0, sur connecteur (A), bornes 19 et 18 (blindage).

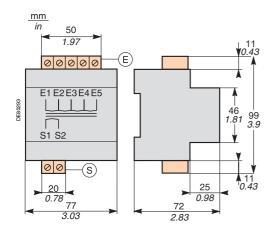

Caractéristiques du câble


- câble gainé blindé par tresse de cuivre étamée
- section du câble mini 0,93 mm² (AWG 18) (maxi 2,5 mm², AWG 12)
- résistance linéique < 100 m Ω /m (30.5 m Ω /ft)
- tenue diélectrique mini : 1000 V (700 Veff)
- longueur maximum : 2 m (6.6 ft).

Le tore CSH30 doit impérativement être installé à proximité de Sepam (liaison Sepam - CSH30 inférieure à 2 m ou 6.6 ft).

Plaquer le câble contre les masses métalliques de la cellule.

La mise à la masse du blindage du câble de raccordement est réalisée dans Sepam. Ne réaliser aucune autre mise à la masse de ce câble.

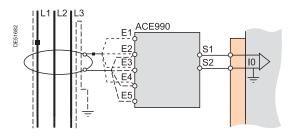


Adaptateur tore ACE990

Adaptateur tore ACE990.

Fonction

Dans le cas d'une utilisation existante l'ACE990 permet l'adaptation de la mesure entre un tore homopolaire MT de rapport 1/n ($50 \le n \le 1500$), et l'entrée de courant résiduel du Sepam.


Caractéristiques

Masse	0,64 kg (1.41 lb)
Montage	Fixation sur profil DIN symétrique
Précision en amplitude	±1 %
Précision en phase	< 2°
Intensité maximale admissible	20 kA - 1 s (au primaire d'un tore MT de rapport 1/50 ne saturant pas)
Température de fonctionnement	-5 °C à +55 °C (+23 °F à +131 °F)
Température de stockage	-25 °C à +70 °C (-13 °F à +158 °F)

Description et dimensions

- (E) Bornier d'entrée de l'ACE990, pour le raccordement du tore homopolaire.
- S Bornier de sortie de l'ACE990, pour le raccordement l'entrée courant résiduel de Sepam.

Adaptateur tore ACE990

Soit un tore de rapport 1/400 2 VA, utilisé dans une plage de

3. Rechercher dans le tableau ci-contre la valeur de k la plus

5. Raccorder le secondaire du tore sur les bornes E2 et E4

Choisir la valeur la plus proche arrondie à la première

Cette valeur de In0 permet de surveiller un courant compris

décimale (exemple : 4,544 A arrondi à 4,5 A).

Comment le raccorder à Sepam via l'ACE990 ?

1. Choisir un courant nominal In0 approché, soit 5 A.

4. Contrôler la puissance mini nécessaire du tore :

In0 approché/nombre de spires = 5/400 = 0,0125.

mesure de 0,5 A à 60 A.

2. Calculer le rapport .

de l'ACE990. 6. Paramétrer Sepam avec :

proche de k = 0.01136.

tore de 2 VA > 0,1 VA V OK.

 $In0 = 0.01136 \times 400 = 4.544 A$

entre 0,45 A et 67,5 A.

Raccordement

Raccordement du tore homopolaire

Un seul tore peut être raccordé à l'adaptateur ACE990.

Le secondaire du tore MT est raccordé sur 2 des 5 bornes d'entrée de l'adaptateur ACE990. Pour définir ces 2 bornes, il est nécessaire de connaître :

- le rapport du tore homopolaire (1/n)
- la puissance du tore
- le courant nominal In0 approché

(In0 est un paramètre général de Sepam, dont la valeur fixe la plage de réglage des protections contre les défauts à la terre entre 0,1 ln0 et 15 ln0).

Le tableau ci-dessous permet de déterminer :

- les 2 bornes d'entrée de l'ACE990 à raccorder au secondaire du tore MT
- le type de capteur courant résiduel à paramétrer
- la valeur exacte de réglage du courant nominal résiduel ln0, donnée par la formule suivante : In0 = k x nombre de spires du tore

avec k coefficient défini dans le tableau ci-dessous.

Le sens de raccordement du tore sur l'adaptateur doit être respecté pour un bon fonctionnement : la borne secondaire S1 du tore MT doit être connectée sur la borne de plus petit indice (Ex).

Bornes d'entrée Paramètre capteur Valeur de K Puissance mini tore MT ACE990 à raccorder courant résiduel E1 - E5 ACE990 - plage 1 0,00578 0,1 VA 0,00676 E2 - E5 ACE990 - plage 1 0,1 VA 0,00885 E1 - E4 ACE990 - plage 1 0,1 VA 0,00909 E3 - E5 ACE990 - plage 1 0,1 VA 0,01136 E2 - E4 ACE990 - plage 1 0,1 VA ACE990 - plage 1 0.01587 E1 - E3 0.1 VA ACE990 - plage 1 0,01667 0,1 VA E4 - E5 E3 - E4 ACE990 - plage 1 0,1 VA 0.02000 0.02632 E2 - E3 ACE990 - plage 1 0.1 VA 0,04000 E1 - E2 ACE990 - plage 1 0,2 VA 0.05780 E1 - E5 ACE990 - plage 2 2.5 VA E2 - E5 ACE990 - plage 2 2,5 VA E1 - E4 ACE990 - plage 2 3,0 VA E3 - E5 ACE990 - plage 2 3.0 VA

0,06757 0,08850 0.09091 3,0 VA 0,11364 E2 - E4 ACE990 - plage 2 0.15873 E1 - E3 ACE990 - plage 2 4,5 VA 0.16667 E4 - E5 ACE990 - plage 2 4,5 VA 0.20000 E3 - E4 ACE990 - plage 2 5,5 VA 0,26316 E2 - E3 ACE990 - plage 2 7,5 VA

Câblage du secondaire du tore MT : S1 du tore MT sur borne E2 de l'ACE990

S2 du tore MT sur borne E4 de l'ACE990.

Raccordement sur Sepam série 48

Sur entrée courant résiduel I0, sur connecteur (A), bornes 19 et 18 (blindage).

Caractéristiques du câble

- câble entre le tore et l'ACE990 : longueur inférieure à 50 m (160 ft)
- câble entre l'ACE990 et le Sepam blindé par tresse de cuivre étamée et gainé de longueur maximum 2 m (6.6 ft)
- section du câble comprise entre 0,93 mm² (AWG 18) et 2,5 mm² (AWG 12)
- résistance linéique inférieure à 100 m Ω /m (30.5 m Ω /ft)
- tenue diélectrique mini : 100 Veff.

Connecter le blindage du câble de raccordement par la liaison la plus courte possible (2 cm ou 5.08 in maximum) à la borne blindage du connecteur Sepam.

Plaquer le câble contre les masses métalliques de la cellule.

La mise à la masse du blindage du câble de raccordement est réalisée dans Sepam. Ne réaliser aucune autre mise à la masse de ce câble.

Modules MES114

Module 10 entrées/4 sorties MES114.

Fonction

L'extension des 4 sorties présentes sur l'unité de base des Sepam série 20 et 40 est réalisée en option par l'ajout d'un module MES114 de 10 entrées et 4 sorties, disponible en 3 versions :

■ MES114 : 10 entrées tensions continues de 24 V CC à 250 V CC

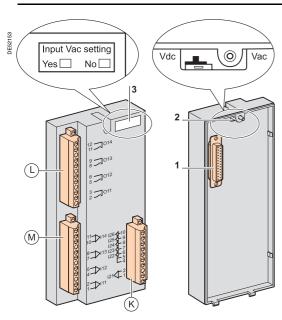
■ MES114E : 10 entrées tensions 110-125 V CA ou V CC

■ MES114F: 10 entrées tensions 220-250 V CA ou V CC.

L'affectation des entrées et sorties est paramétrable à partir de l'IHM avancée et à l'aide du logiciel SFT2848.

Caractéristiques

Module MES114						
Masse	0,28 kg (0.617 lb)					
Température de fonctionnement	-25 °C à +70 °C (-13 °F à +158 °F)					
Caractéristiques d'environnement	Identiques aux caractéristiques des unités de base Sepam					


Entrées logiques		MES114	114 MES114E			MES114F		
Tension		24 à 250 V CC	110 à 125 V CC	110 V CA	220 à 250 V CC	220 à 240 V CA		
Plage		19,2 à 275 V CC	88 à 150 V CC	88 à 132 V CA	176 à 275 V CC	176 à 264 V CA		
Fréquence		-	-	47 à 63 Hz	-	47 à 63 Hz		
Consommation	typique	3 mA	3 mA	3 mA	3 mA	3 mA		
Seuil de bascule typique	ement	14 V CC	82 V CC	58 V CA	154 V CC	120 V CA		
Tension limite	A l'état 1	≥ 19 V CC	≥ 88 V CC	≥ 88 V CA	≥ 176 V CC	≥ 176 V CA		
d'entrée	A l'état C) ≤ 6 V CC	< 75 V CC	≤ 22 V CA	≤ 137 V CC	< 48 V CA		
Isolation des entrées par rapport aux autres groupes isolés		Renforcée	Renforcée	Renforcée	Renforcée	Renforcée		

Sortie à relais	de comm	nande O1	1			
Tension	Continue	24/48 V CC	127 V CC	220 V CC	250 V CC	-
	Alternative (47,5 à 63 Hz)	-	-	-	-	100 à 240 V CA
Courant permanent		8 A	8 A	8 A	8 A	8 A
Pouvoir de coupure	Charge résistive	8/4 A	0,7 A	0,3 A	0,2 A	8 A
	Charge L/R < 20 ms	6/2 A	0,5 A	0,2 A	-	-
	Charge L/R < 40 ms	4/1 A	0,2 A	0,1 A	-	-
	Charge cos φ > 0,3	-	-	-	-	5 A

Pouvoir de fermeture < 15 A pendant 200 ms Isolation des sorties Renforcée par rapport aux autres

groupes isolés						
Sortie à relais	de signa	lisation C	012 à O	14		
Tension	Continue	24/48 V CC	127 V CC	220 V CC	250 V CC	-
	Alternative (47,5 à 63 Hz)	-	-	-	-	100 à 240 V CA
Courant permanent		2 A	2 A	2 A	2 A	2 A
Pouvoir de coupure	Charge résistive	2/1 A	0,6 A	0,3 A	0,2 A	-
	Charge L/R < 20 ms	2/1 A	0,5 A	0,15 A	-	-
	Charge cos φ > 0,3	-	-	-	-	1 A
Pouvoir de fermeture		< 15 A pend	ant 200 ms			
Isolation des sorties par rapport aux autres groupes isolés		Renforcée				

Schneider Electric

Description

 $\bigcirc,\ \textcircled{M}$ et K:3 connecteurs de raccordement à vis, amovibles et verrouillables par vissage.

- (L): connecteurs de raccordement des 4 sorties à relais :
- O11 : 1 sortie à relais de commande
- O12 à O14 : 3 sorties à relais de signalisation.
- M : connecteurs de raccordement de 4 entrées logiques indépendantes I11 à I14
- (K): connecteurs de raccordement de 6 entrées logiques:
- I21 : 1 entrée logique indépendante,
- 122 à 126 : 5 entrées logiques à point commun.

1 connecteur sub-D 25 broches pour raccordement du module à l'unité de base 2 interrupteur de sélection de la tension des entrées des modules MES114E et MES114F, à positionner sur :

- Vdc pour 10 entrées en tension continue (position par défaut)
- Vac pour 10 entrées en tension alternative .
- 3 étiquette à renseigner pour indiquer le choix de paramétrage effectué pour la tension d'entrée des MES114E et MES114F.

L'état du paramétrage effectué est accessible dans l'écran "Diagnostic Sepam" du logiciel SFT2848.

Le paramétrage des entrées en tension alternative (position Vac) inhibe la fonction "mesure du temps de manœuvre".

Montage

- 1. Insérer les 2 ergots du module MES dans les logements 1 de l'unité de base.
- 2. Plaquer le module contre l'unité de base pour le raccordement au connecteur 2.
- 3. Visser la vis de fixation 3.

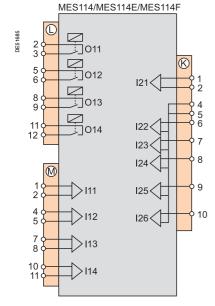
6

Modules MES114

Raccordement

Les entrées sont libres de potentiel, la source d'alimentation courant continu est externe.

A DANGER


RISQUES D'ÉLECTROCUTION, D'ARC ELECTRIQUE OU DE BRULURES

- L'installation de cet équipement doit être confiée exclusivement à des personnes qualifiées, qui ont pris connaissance de toutes les instructions d'installation et contrôlé les caractéristiques techniques de l'équipement.
- Ne travaillez JAMAIS seul.
- Coupez toute alimentation avant de travailler sur cet équipement. Tenez compte de toutes les sources d'alimentation et en particulier aux possibilités d'alimentation extérieure à la cellule où est installé l'équipement.
- Utilisez toujours un dispositif de détection de tension adéquat pour vérifier que l'alimentation est coupée.
- Vissez fermement toutes les bornes, même celles qui ne sont pas utilisées.

Le non-respect de ces instructions entraînera la mort ou des blessures graves.

Câblage des connecteurs (L), (M) et (K):

- câblage sans embouts :
- □ 1 fils de section 0,2 à 2,5 mm² maximum (AWG 24-12)
- □ ou 2 fils de section de 0,2 à 1 mm² maximum (AWG 24-18)
- □ longueur de dénudage : 8 à 10 mm (0.315 à 0.39 in)
- câblage avec embouts :
- □ borne 5, câblage préconisé avec embout Télémecanique :
- DZ5CE015D pour 1 fil 1,5 mm² (AWG 16)
- DZ5CE025D pour 1 fil 2,5 mm² (AWG 12)
- AZ5DE010D pour 2 fils 1 mm² (AWG 18)
- □ longueur du tube : 8,2 mm (0.32 in)
- □ longueur de dénudage : 8 mm (0.31 in).

Module sortie analogique MSA141.

Fonction

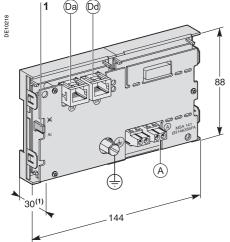
Le module MSA141 convertit une des mesures de Sepam en signal analogique :

Module sortie analogique MSA141

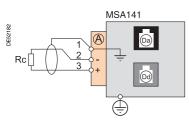
- sélection de la mesure à convertir par paramétrage
- signal analogique 0-10 mA, 4-20 mA, 0-20 mA selon paramétrage
- mise à l'échelle du signal analogique par paramétrage des valeurs minimum et maximum de la mesure convertie.

Exemple: pour disposer du courant phase 1 en sortie analogique 0-10 mA avec une dynamique de 0 à 300 A, il faut paramétrer :

- □ valeur minimum = 0
- □ valeur maximum = 3000
- 1 seul module par unité de base Sepam, à raccorder par un des câbles préfabriquées CCA770, CCA772 ou CCA774 (0,6 ou 2 ou 4 mètres).


La sortie analogique peut également être pilotée à distance via le réseau de communication Modbus.

Caractéristiques


our uotor rouquoo			
Module MSA141			
Masse	0,2 kg		
Montage	Sur rail DIN symétrique		
Température de fonctionnement	-25 °C à +70 °C		
Caractéristiques d'environnement	Identiques aux caractéristiques de l'unité de base Sepam		
Sortie analogique	•		
Courant	4-20 mA, 0-20 mA, 0-10 r	mA	
Mise à l'échelle (sans contrôle de saisie)	Valeur minimum		
	Valeur maximum		
Impédance de charge	$<$ 600 Ω (câblage inclus)		
Précision	0,5 %		
Mesures disponibles	Unité	Série 48	
Courants phase et résiduel	0,1 A		
Tensions simples et composées	1 V	-	
Fréquence	0,01 Hz	-	
Echauffement	1 %		
Températures	1 °C		
Puissance active	0,1kW		
Puissance réactive	0,1 kvar		
Puissance apparente	0,1 kVA		
Téléréglage par communication			

Description et dimensions

- (A) Borniers de raccordement de la sortie analogique.
- (Da) Prise RJ45 pour raccordement du module côté unité de base par câble CCA77x.
- (Dd) Prise RJ45 pour chaînage du module déporté suivant par câble CCA77x (selon application).
- $(\frac{1}{2})$ Borne de mise à la terre.
- 1 Cavalier pour adaptation de fin de ligne avec résistance de charge (Rc),
 - Rc, si le module n'est pas le dernier de la chaîne (position par défaut)
 - Rc, si le module est le dernier de la chaîne.

(1) 70 mm avec câble CCA77x raccordé.

Raccordement

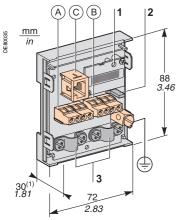
Raccordement de la borne de mise à la terre

Par tresse de cuivre étamée de section ≥ 6 mm² (AWG 10) ou par câble de section ≥ 2,5 mm² (AWG 12) et de longueur ≤ 200 mm (7.9 in) équipé d'une cosse à oeil de 4 mm (0.16 in).

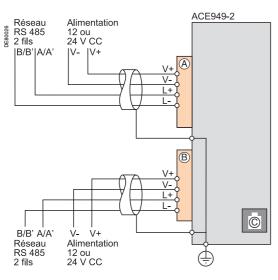
Veiller au bon serrage, couple de serrage maximum 2,2 Nm (19.5 lb-in).

Raccordement de la sortie analogique sur connecteur à vis

- 1 fil de section 0,2 à 2,5 mm² (> AWG 24-12)
- ou 2 fils de section 0,2 à 1 mm² (> AWG 24-16).


Précautions de câblage

- utiliser de préférence du câble blindé
- connecter le blindage au moins du côté MSA141 par tresse de cuivre étamée.


Interface réseau RS 485 2 fils ACE949-2

Interface de raccordement réseau RS 485 2 fils ACE949-2

(1) 70 mm (2.8 in) avec câble CCA612 raccordé.

Fonction

L'interface ACE949-2 remplit 2 fonctions :

- interface électrique de raccordement de Sepam à un réseau de communication de couche physique RS 485 2 fils
- boîtier de dérivation du câble réseau principal pour la connexion d'un Sepam via le câble préfabriqué CCA612.

Caractéristiques

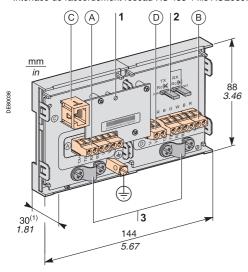
Module ACE949-2		
Masse	0,1 kg (0.22 lb)	
Montage	Sur rail DIN symétrique	
Température de fonctionnement	-25 °C à +70 °C (-13 °F à +158 °F)	
Caractéristiques d'environnement	Identiques aux caractéristiques des unités de base Sepam	
Interface électrique RS	485 2 fils	
Standard	EIA RS 485 différentiel 2 fils	
Télé-alimentation	Externe, 12 V CC ou 24 V CC ±10 %	
Consommation	16 mA en réception	
	40 mA maximum en émission	

Longueur maximale du réseau RS 485 2 fils avec câble standard

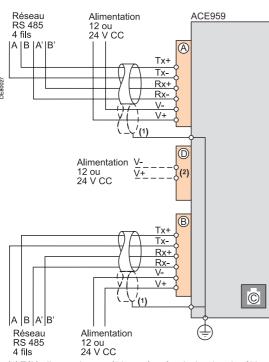
Nombre de Sepam	Longueur maximum avec alimentation 12 V CC	Longueur maximum avec alimentation 24 V CC
5	320 m (1000 ft)	1000 m (3300 ft)
10	180 m (590 ft)	750 m (2500 ft)
20	160 m (520 ft)	450 m (1500 ft)
25	125 m (410 ft)	375 m (1200 ft)

Description et dimensions

- (A) et (B) Borniers de raccordement du câble réseau.
- C Prise RJ45 pour raccordement de l'interface à l'unité de base par câble CCA612.
- (t) Borne de mise à la masse / terre.
- 1 Voyant "Activité ligne", clignote lorsque la communication est active (émission ou réception en cours).
- Cavalier pour adaptation de fin de ligne du réseau RS 485 avec résistance de charge (Rc = 150 Ω), à positionner sur :
 - Bc, si le module n'est pas à une extrémité du réseau (position par défaut)
 - Rc, si le module est à une extrémité du réseau.
- 3 Etriers de fixation des câbles réseau (diamètre intérieur de l'étrier = 6 mm ou 0.24 in).


Raccordement

- raccordement du câble réseau sur les borniers à vis (A)et (B)
- raccordement de la borne de mise à la terre par tresse de cuivre étamée de section ≥ 6 mm² (AWG 10) ou par câble de section ≥ 2,5 mm² (AWG 12) et de longueur ≤ 200 mm (7.9 in) équipé d'une cosse à œil de 4 mm (0.16 in). Veiller au bon serrage, couple de serrage maximum 2,2 Nm (19.5 lb-in).
- les interfaces sont équipées d'étriers destinés à la fixation du câble réseau et à la reprise de blindage à l'arrivée et au départ du câble réseau :
- □ le câble réseau doit être dénudé
- □ la tresse de blindage du câble doit l'envelopper et être en contact avec l'étrier de fixation
- l'interface est à raccorder au connecteur (C) de l'unité de base à l'aide du câble préfabriqué CCA612 (longueur = 3 m ou 9.8 ft, embouts verts)
- les interfaces sont à alimenter en 12 V CC ou 24 V CC.


Interface réseau RS 485 4 fils ACE959

Schwider Sch

Interface de raccordement réseau RS 485 4 fils ACE959.

(1) 70 mm (2.8 in) avec câble CCA612 raccordé.

(1) Télé-alimentation en câblage séparé ou inclus dans le câble blindé (3 paires).

(2) Bornier pour raccordement du module fournissant la téléalimentation.

Fonction

L'interface ACE959 remplit 2 fonctions :

- interface électrique de raccordement de Sepam à un réseau de communication de couche physique RS 485 4 fils
- boîtier de dérivation du câble réseau principal pour la connexion d'un Sepam via le câble préfabriqué CCA612.

Caractéristiques

Module ACE959	
Masse	0,2 kg (0.441 lb)
Montage	Sur rail DIN symétrique
Température de fonctionnement	-25 °C à +70 °C (-13 °F à +158 °F)
Caractéristiques d'environnement	Identiques aux caractéristiques des unités de base Sepam
Interface électrique RS 485	4 fils
Standard	EIA RS 485 différentiel 4 fils
Télé-alimentation	Externe, 12 V CC ou 24 V CC ±10 %
Consommation	16 mA en réception

Longueur maximale du réseau RS 485 4 fils avec câble standard			
Nombre de Sepam	Longueur maximum avec alimentation 12 V CC	Longueur maximum avec alimentation 24 V CC	
5	320 m (1000 ft)	1000 m (3300 ft)	
10	180 m (590 ft)	750 m (2500 ft)	
20	160 m (520 ft)	450 m (1500 ft)	
25	125 m (410 ft)	375 m (1200 ft)	

40 mA maximum en émission

Description et dimensions

- (A) et (B) Borniers de raccordement du câble réseau.
- C Prise RJ45 pour raccordement de l'interface à l'unité de base par câble CCA612.
- (D) Bornier de raccordement d'une alimentation auxiliaire (12 V CC ou 24 V CC) séparée.
- t Borne de mise à la masse / terre.
- 1 Voyant "Activité ligne", clignote lorsque la communication est active (émission ou réception en cours).
- 2 Cavalier pour adaptation de fin de ligne du réseau RS 485 4 fils avec résistance de charge (Rc = 150 Ω), à positionner sur :
 - 为 , si le module n'est pas à une extrémité du réseau (position par défaut)
 - Rc, si le module est à une extrémité du réseau.
- 3 Etriers de fixation des câbles réseau (diamètre intérieur de l'étrier = 6 mm ou 0.24 in).

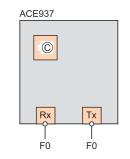
Raccordement

- raccordement du câble réseau sur les borniers à vis (A) et (B)
- raccordement de la borne de mise à la terre par tresse de cuivre étamée de section > 6 mm² (AWG 10) ou par câble de section > 2,5 mm² (AWG 12) et de longueur < 200 mm (7.9 in) équipé d'une cosse à œil de 4 mm (0.16 in). Veiller au bon serrage, couple de serrage maximum 2,2 Nm (19.5 lb-in).
- les interfaces sont équipées d'étriers destinés à la fixation du câble réseau et à la reprise de blindage à l'arrivée et au départ du câble réseau :
- □ le câble réseau doit être dénudé
- $\hfill \square$ la tresse de blindage du câble doit l'envelopper et être en contact avec l'étrier de fixation
- l'interface est à raccorder au connecteur (C) de l'unité de base à l'aide du câble préfabriqué CCA612 (longueur = 3 m ou 9.8 ft, embouts verts)
- les interfaces sont à alimenter en 12 V CC ou 24 V CC
- l'ACE959 accepte une télé-alimentation en câblage séparé (non inclus dans le câble blindé). Le bornier (D) permet le raccordement du module fournissant la télé-alimentation.

Interface fibre optique ACE937

Interface de raccordement réseau fibre optique ACE937.

A ATTENTION


RISQUE D'AVEUGLEMENT

Ne regardez jamais directement l'extrémité de la fibre optique.

Le non-respect de cette instruction peut entraîner des blessures graves.

mm In 888 3.46

(1) 70 mm (2.8 in) avec câble CCA612 raccordé.

Fonction

L'interface ACE937 permet le raccordement d'un Sepam à un réseau de communication fibre optique en étoile.

Ce module déporté se raccorde à l'unité de base Sepam par un câble préfabriqué CCA612.

Caractéristiques

Module AC	E937					
Masse		0,1 kg (0.22 lb))			
Montage		Sur rail DIN sy	Sur rail DIN symétrique			
Alimentation		Fournie par Se	Fournie par Sepam			
Température de fe	onctionnement	-25 °C à +70 °	-25 °C à +70 °C (-13 °F à +158 °F)			
Caractéristiques d'environnement		Identiques aux	Identiques aux caractéristiques des unités de base Sepam			
Interface fil	bre optique					
Type de fibre		Silice multimode à gradient d'indice				
Longueur d'onde		820 nm (infra rouge non visible)				
Type de connectique		ST (baïonnette BFOC)				
Diamètre fibre optique (µm)	Ouverture numérique (NA)	Atténuation maximale (dBm/km)	Puissance optique disponible minimum (dBm)	Longueur maximum de la fibre		
50/125	0,2	2,7	5,6	700 m (2300 ft)		
62,5/125	0,275	3,2	9,4	1800 m (5900 ft)		
100/140	0,3	4	14,9	2800 m (9200 ft)		
200 (HCS)	0,37	6 19,2 2600 m (8500 ft)				

Longueur maximum calculée avec :

- puissance optique disponible minimale
- atténuation maximale de la fibre
- perte dans les 2 connecteurs ST : 0,6 dBm
- réserve de puissance optique : 3 dBm (suivant norme CEI 60870).

Exemple pour une fibre 62,5/125 µm

Lmax = (9,4 - 3 - 0,6) / 3,2 = 1,8 km (1.12 mi)

Description et dimensions

- © Prise RJ45 pour raccordement de l'interface à l'unité de base par câble CCA612.
- Voyant "Activité ligne", clignote lorsque la communication est active (émission ou réception en cours).
- 2 Rx, connecteur de type ST femelle (réception Sepam).
- 3 Tx, connecteur de type ST femelle (émission Sepam).

Raccordement

- les fibres optiques émission et réception doivent être équipées de connecteurs de type ST mâles
- raccordement des fibres optiques par vissage sur connecteurs Rx et Tx l'interface est à raccorder au connecteur C de l'unité de base à l'aide du câble préfabriqué CCA612 (longueur = 3 m ou 9.8 ft, embouts verts).

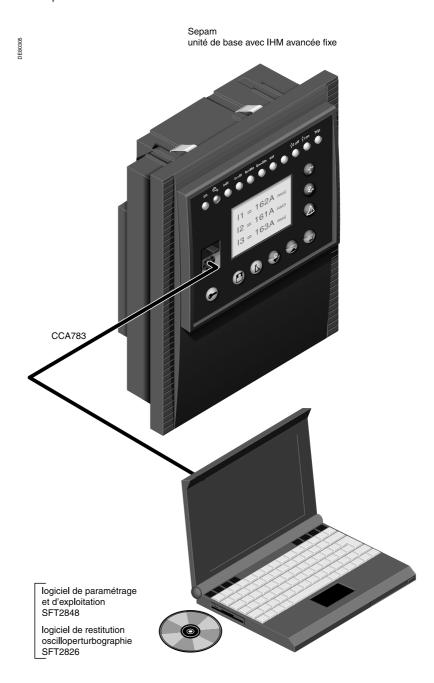
Sommaire

Interfaces Homme Machine

IHM expert - SF12848	
Présentation	7/3
IHM expert - SFT2848 Organisation générale de l'écran	7/4
IHM expert - SFT2848	
Utilisation du logiciel	7/5
IHM avancée	7/6
Paramètres par défaut, toutes applications	7/13

7

7/2


Interfaces Homme Machine

Sepam dispose en face avant d'une IHM avancée, avec clavier et écran LCD graphique donnant accès à toutes les informations nécessaires à l'exploitation locale et au paramétrage de Sepam.

L'IHM en face avant du Sepam peut être complétée par une IHM expert constituée par le logiciel SFT2848 sur PC, utilisable pour toutes les fonctions de paramétrage, d'exploitation locale et de personnalisation de Sepam.

L'IHM expert est disponible sous forme de kit, le kit SFT2848, comprenant :

- un CD-ROM, avec
- □ le logiciel de paramétrage et d'exploitation SFT2848
- □ le logiciel de restitution des fichiers d'oscilloperturbographie SFT2826
- le câble CCA783, permettant la liaison entre le PC et le port série en face avant de Sepam.

IHM expert - SFT2848 Présentation

Cette IHM est disponible (en complément de l'IHM avancée intégrée au produit) sur l'écran du PC équipé du logiciel SFT2848 et connecté en face avant du Sepam (fonctionnant dans un environnement Windows 2000 / XP).

Toutes les informations utiles à une même tache sont regroupées sur un même écran pour en faciliter l'exploitation. Des menus et des icônes permettent un accès direct et rapide aux informations souhaitées.

Exploitation courante

- affichage de toutes les informations de mesure et d'exploitation
- affichage des messages d'alarme avec l'heure d'apparition (date, heure, mn, s, ms)
- affichage des informations de diagnostic telles que : courant de déclenchement, nombre de manœuvres de l'appareillage et cumul des courants coupés
- affichage de toutes les valeurs de réglage et paramétrage effectués
- visualisation des états logiques des entrées, sorties et des voyants.

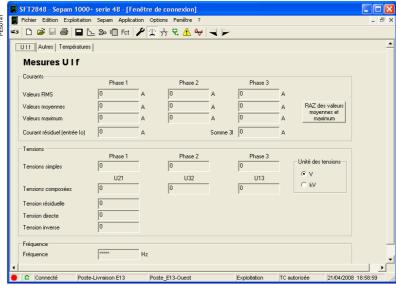
Cette IHM offre la réponse adaptée à une exploitation en local occasionnelle pour un personnel exigeant et désireux d'accèder rapidement à toutes les informations.

Paramétrage et réglage (1)

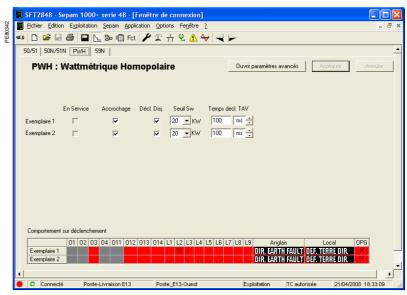
- affichage et réglage de tous les paramètres de chaque fonction de protection sur une même page
- paramètrage de la logique de commande, paramètrage des données générales de l'installation et du Sepam
- les informations saisies peuvent être préparées à l'avance et transférées en une seule opération dans le Sepam (fonction down loading).

Principales fonctions réalisées par le SFT2848 :

- modification des mots de passe
- saisie des paramètres généraux (calibres, période d'intégration, ...)
- saisie des réglages des protections
- modification des affectations de la logique de commande
- mise en/hors service des fonctions
- sauvegarde des fichiers.


Sauvegarde

- les données de réglage et de paramétrage peuvent être sauvegardées
- l'édition d'un rapport est également possible. Cette IHM permet également la récupération des fichiers d'oscilloperturbographie et leur restitution à l'aide du logiciel SFT2826.


Aide à l'exploitation

Accès à partir de tous les écrans à une rubrique d'aide contenant les informations techniques nécessaires à l'utilisation et à la mise en œuvre du Sepam.

(1) Modes accessibles via 2 mots de passe (niveau réglage, niveau paramétrage).

Exemple d'écran d'affichage des mesures

Exemple d'écran de réglage de la protection PWH.

IHM expert - SFT2848 Organisation générale de l'écran

Un document Sepam est affiché à l'écran via une interface graphique présentant les caractéristiques classiques des fenêtres Windows.

Tous les écrans du logiciel SFT2848 présentent la même organisation.

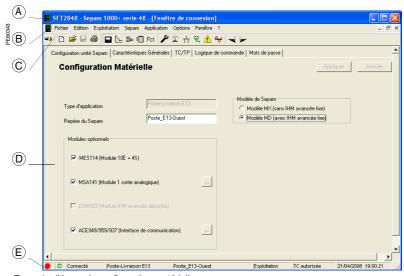
On distingue:

- (A): la barre de titre, avec:
- □ nom de l'application (SFT2848)
- □ identification du document Sepam affiché
- □ poignées de manipulation de la fenêtre
- (B): la barre de menu, pour accéder à toutes les fonctions du logiciel SFT2848 (les fonctions non accessibles sont libellées en gris)
- ①: la barre d'outils, ensemble d'icônes contextuelles pour accès rapide aux fonctions principales (accessibles également par la barre de menu)
- ① : la zone de travail à la disposition de l'utilisateur, présenté sous forme de boîtes à onglets
- (E): la barre d'état, avec les indications suivantes, relatives au document actif:
- □ présence alarme
- □ identification de la fenêtre de connexion
- □ mode de fonctionnement du SFT2848, connecté ou déconnecté
- □ type du Sepam
- □ repère du Sepam en cours d'édition
- □ niveau d'identification
- □ mode d'exploitation du Sepam
- □ date et heure du PC.

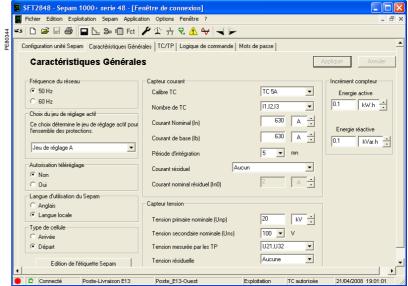
Navigation guidée

Pour faciliter la saisie de l'ensemble des paramètres et réglages d'un Sepam, un mode de navigation guidé est proposé. Il permet de parcourir dans l'ordre naturel tous les écrans à renseigner.

L'enchaînement des écrans en mode guidé est commandé par action sur 2 icônes de la barre d'outils (C):


- ◀: pour revenir à l'écran précédent
- D: pour passer à l'écran suivant.

Les écrans s'enchaînent dans l'ordre suivant :


- 1. Configuration matérielle de Sepam
- 2. Caractéristiques générales
- 3. Surveillance des circuits TC/TP
- 4. Logique de commande
- 5. Mots de passe
- 6. Les écrans de réglage des protections disponibles, suivant le type de Sepam
- 7. Editeur d'équations logiques
- 8. Les différents onglets de la matrice de commande
- 9. Paramétrage de la fonction oscilloperturbographie.

Aide en ligne

A tout instant, l'opérateur peut consulter l'aide en ligne à partir de la commande "?" de la barre de menu. L'aide en ligne nécessite un explorateur de type Netscape Navigator ou Internet Explorer MS.

Exemple d'écran de configuration matérielle.

Exemple d'écran de paramétrage des caractéristiques générales.

IHM expert - SFT2848 Utilisation du logiciel

Mode non connecté au Sepam Paramétrage et réglage Sepam

Le paramétrage et réglage d'un Sepam avec SFT2848 consiste à préparer le fichier Sepam contenant toutes les caractéristiques propres à l'application, fichier qui sera ensuite chargé dans Sepam lors de la mise en service

A ATTENTION

RISQUE DE FONCTIONNEMENT IMPREVU

- L'équipement doit être configuré et réglé uniquement par un personnel qualifié, à partir des résultats de l'étude du système de protection de l'installation.
- Lors de la mise en service de l'installation et après toute modification, contrôlez que la configuration et les réglages des fonctions de protection du Sepam sont cohérents avec les résultats de cette étude.

Le non-respect de ces instructions peut entraîner des dommages matériels.

Mode opératoire :

- 1. Créer un fichier Sepam correspondant au type de Sepam à paramétrer. (Le fichier nouvellement créé contient les paramètres et réglages usine du Sepam).
- 2. Modifier les paramètres généraux de Sepam et les réglages des fonctions de protection :
- toutes les informations relatives à une même fonction sont rassemblées sur un même écran
- il est recommandé de renseigner l'ensemble des paramètres et réglages en suivant l'ordre naturel des écrans proposé par le mode de navigation guidé.

Saisie des paramètres et des réglages :

- les champs de saisie des paramètres et réglages sont adaptés à la nature de la valeur :
- □ boutons de choix
- □ champs pour saisie de valeur numérique
- □ boîte de dialogue (Combo box)
- les nouvelles valeurs saisies sont à "Appliquer" ou à "Annuler" avant de passer à l'écran suivant
- la cohérence des nouvelles valeurs appliquées est contrôlée :
- □ un message explicite identifie la valeur incohérente et précise les valeurs autorisées
- ☐ les valeurs devenues incohérentes suite à la modification d'un paramètre sont ajustées à la valeur cohérente la plus proche.

Mode connecté au Sepam

Précaution

Dans le cas d'utilisation d'un PC portable, compte tenu des risques inhérents à l'accumulation d'électricité statique, la précaution d'usage consiste à se décharger au contact d'une masse métallique reliée à la terre avant connexion physique du câble CCA783 (livré avec kit SFT2848).

Raccordement au Sepam

■ raccordement du connecteur (type SUB-D) 9 broches à l'un des ports de communication du PC.

Configuration du port de communication PC à partir de la fonction "Port de communication" du menu "Option".

■ raccordement du connecteur (type minidin rond) 6 broches au connecteur situé derrière l'obturateur en face avant du Sepam.

Connexion au Sepam

2 possibilités pour établir la connexion entre SFT2848 et le Sepam :

- fonction "Connexion" du menu "fichier"
- choix connecter lors du lancement du SFT2848.

Lorsque la connexion est établie le avec Sepam, l'information "Connecté" apparaît dans la barre d'état, et la fenêtre de connexion du Sepam est accessible dans la zone de travail.

Identification de l'utilisateur

La fenêtre permettant la saisie du mot de passe à 4 chiffres est activée :

- à partir de l'onglet "Mots de passe'
- à partir de la fonction "Identification" du menu "Sepam"
- à partir de l'icône "Identification".

La fonction "Retour au mode Exploitation" de l'onglet "Mots de passe" retire les droits d'accès au mode paramétrage et réglage.

Chargement des paramètres et réglages

Le chargement d'un fichier de paramètres et réglages dans le Sepam connecté n'est possible qu'en mode Paramétrage.

Lorsque la connexion est établie, la procédure de chargement d'un fichier de paramètres et réglages est la suivante :

- 1. Activez la fonction "Chargement Sepam" du menu "Sepam".
- 2. Sélectionnez le fichier (*.E11, *.E12, *.E13, *.E14, *.E15, *.E22, *.E23, .*E32,
- .*E33 suivant le type de l'application) qui contient les données à charger.

Retour aux réglages usine

Cette opération n'est possible qu'en mode Paramétrage, à partir du menu "Sepam". L'ensemble des paramètres généraux de Sepam, des réglages des protections et la matrice de commande reprennent leurs valeurs par défaut.

Déchargement des paramètres et réglages

Le déchargement du fichier de paramètres et réglages du Sepam connecté est possible en mode Exploitation.

Lorsque la connexion est établie, la procédure de déchargement d'un fichier de paramètres et réglages est la suivante :

- 1. Activez la fonction "Déchargement Sepam" du menu "Sepam".
- 2. Sélectionnez le fichier qui contiendra les données déchargées.
- 3. Acquitter le compte rendu de fin de l'opération.

Exploitation locale du Sepam

Connecté à Sepam, le SFT2848 propose toutes les fonctions d'exploitation locale disponibles sur l'écran de l'IHM avancée, complétées par les fonctions suivantes :

- réglage de l'horloge interne du Sepam, à partir de l'onglet "Diagnostic Sepam"
- mise en œuvre de la fonction oscilloperturbographie, à partir du menu "OPG" : validation/inhibition de la fonction, récupération des fichiers Sepam, lancement du SET2826
- consultation de l'historique des 250 dernières alarmes Sepam, avec horodatation
- accès aux informations de diagnostic Sepam, dans la boîte à onglet "Sepam", rassemblées sous "Diagnostic Sepam"
- en mode Paramétrage, la modification des valeurs diagnostic appareillage est possible : compteur de manœuvres, cumul des kA² coupés pour réinitialiser ces valeurs après changement de l'appareil de coupure.

IHM avancée Présentation

L'IHM en face avant de Sepam comprend :

- 2 voyants signalant l'état de fonctionnement du Sepam :
- □ voyant vert "on" : appareil sous tension
- □ voyant rouge "clé" : appareil indisponible (phase d'initialisation ou détection d'une défaillance interne)
- 9 voyants jaunes de signalisation, paramétrables munis d'une étiquette standard (le logiciel SFT2848 permet l'édition d'une étiquette personnalisée sur imprimante laser)
- 1 prise de raccordement pour la liaison avec le PC (cordon CCA783), la prise est protégée par un cache coulissant
- un afficheur LCD "graphique" permettant l'affichage des valeurs de mesures, de réglages / paramétrages et des messages d'alarmes et d'exploitation.

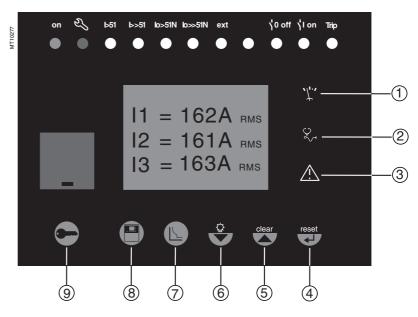
Nombre de lignes, taille des caractères et symboles selon écrans et versions linguistiques.

L'afficheur LCD est rétro-éclairé lorsqu'on appuie sur une touche.

■ un clavier de 9 touches selon 2 modes d'utilisation :

Touches blanches actives en mode d'exploitation courante :

- (1) affichage des mesures,
- 2 affichage des informations "diagnostic appareillage, réseau",
- (3) affichage des messages alarmes,
- 4 réarmement,
- (5) acquittement et effacement des alarmes.


Touches bleues actives en mode paramétrage et réglage :

- 7 accès aux réglages des protections,
- 8 accès au paramètrage du Sepam,
- permet l'introduction des 2 mots de passe nécessaires pour modifier réglages et paramètres.

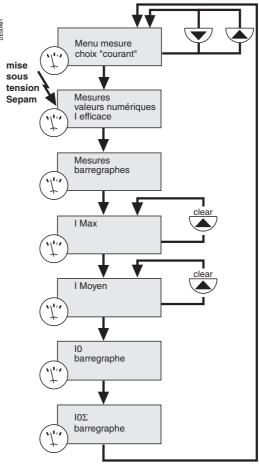
Les touches ", , , , , , , , , , , , , ,) permettent la navigation dans les menus, le défilement et l'acceptation des valeurs affichées.

Touche 6 "test lampes":

séquence d'allumage de tous les voyants.

Accès aux mesures et aux paramètres

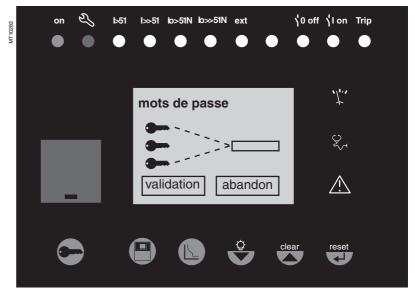
Les mesures et les paramètres sont accessibles par les touches mesure, diagnostic, status et protection, à travers un premier menu qui permet de sélectionner une succession d'écrans comme le présente le schéma ci-contre.


- ces données sont réparties par catégorie dans 4 menus, associées aux 4 touches suivantes :
- □ touche (†): les mesures

choix : courant, tension, fréquence, puissance, énergie □ touche ② : le diagnostic appareillage et les mesures complémentaires. Choix : diagnostic, contextes de déclenchement (x5)

□ touche 👚 : les paramètres généraux choix : général, modules, capteurs I/U, surveillance TC/TP, logique de commande, test E/S □ touche 🕲 : les réglages des protections choix : Iphase, Irésiduel, Idirectionnel, tension, fréquence, puissance, machine,réenclencheur

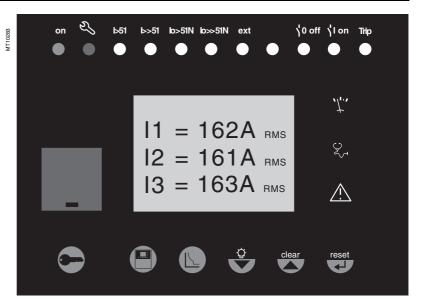
■ l'appui sur la touche permet le passage à l'écran suivant de la boucle. Quand un écran comporte plus de 4 lignes, le déplacement dans cet écran se fait par les touches curseurs (♠, ♥).


Exemple : boucle de mesures

Les modes réglage et paramétrage

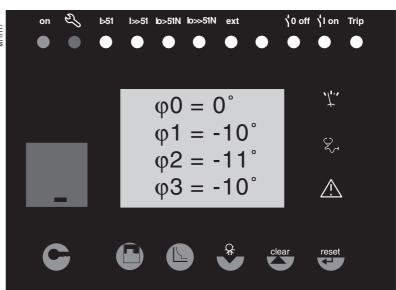
Il existe 3 niveaux d'utilisation :

- le niveau exploitant. Permet d'accéder en lecture à tous les écrans et ne requiert aucun mot de passe
- le niveau régleur : nécessite l'introduction du 1er mot de passe (touche) permet le réglage des protections (touche)
- le niveau paramétreur : nécessite l'introduction du 2e mot de passe (touche) permet également de modifier les paramètres généraux (touche). Seul le paramétreur peut modifier les mots de passe. Les mots de passe sont constitués de 4 chiffres.

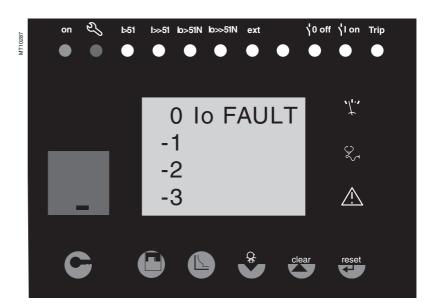

IHM avancée

Touches blanches d'exploitation courante

La touche


La touche "mesure" permet l'affichage des grandeurs de mesure fournies par Sepam.

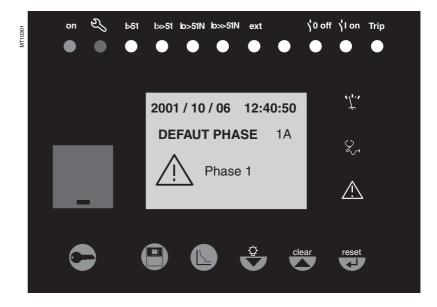
La touche


La touche "diagnostic" donne accès à des informations de diagnostic de l'appareil de coupure, aux contextes de déclenchement et à des mesures complémentaires, pour faciliter l'analyse des défauts.

La touche

La touche "alarmes" permet de consulter les 16 plus récentes alarmes non encore effacées, sous forme d'une liste ou en détail alarme par alarme.

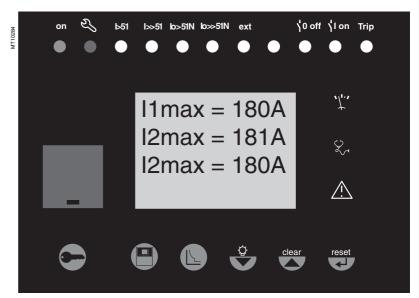
IHM avancée


Touches blanches d'exploitation courante

La touche

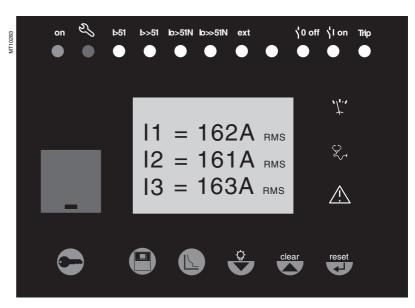
La touche "reset" réarme le Sepam (extinction des voyants et réarmement des protections après disparition des défauts).

Les messages d'alarme ne sont pas effacés. Le réarmement du Sepam doit être confirmé.

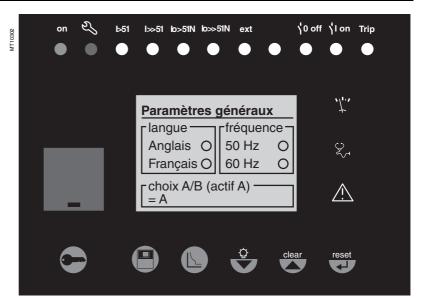


La touche

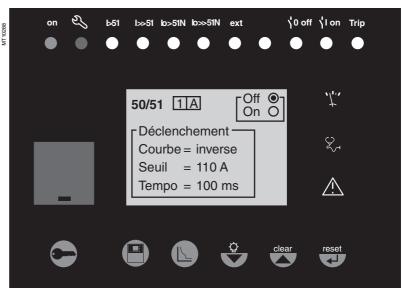
Quand une alarme est présente sur l'afficheur du Sepam, la touche "clear" permet de revenir à l'écran présent avant l'apparition de l'alarme ou à une alarme plus ancienne non acquittée. Le Sepam n'est pas réarmé.


Dans les menus mesure ou diagnostic ou alarme, la touche "clear" permet de remettre à zéro les courants moyens, les maximètres de courant, le compteur horaire et la pile d'alarmes lorsque ceux-ci sont à l'affichage.

La touche

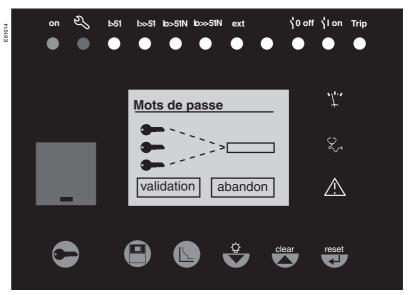

Appuyer sur la touche "test lampe" pendant 5 secondes lance une séquence de test des leds et de l'afficheur. Quand une alarme est présente, la touche "test lampe" est sans effet.

La touche


La touche "status" permet l'affichage et l'introduction des paramètres généraux de Sepam. Ils définissent les caractéristiques de l'équipement protégé ainsi que les différents modules optionnels.

La touche

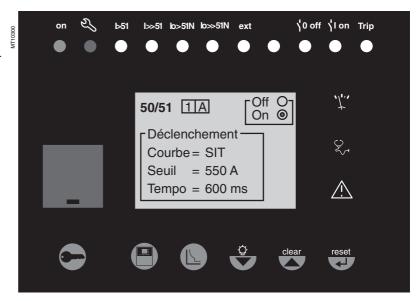
La touche "protection" permet l'affichage, le réglage et la mise en ou hors service des protections.


La touche

La touche "clé" permet la saisie des mots de passe pour accéder aux différents modes :

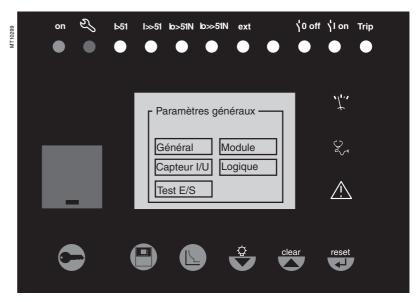
- réglage
- paramétrage.

et le retour au mode "exploitation" (sans mot de passe).

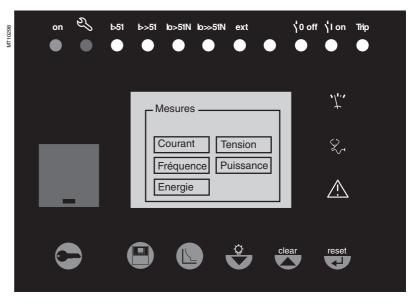

Nota : le paramétrage des voyants et des relais de sortie nécessite l'emploi du logiciel SFT2848, menu "logique de commande".

IHM avancée

La touche


paramètres, des choix de menu ou des mots de passe.

La touche


Quand aucune alarme n'est présente sur l'afficheur du Sepam et que l'on se trouve dans les menus status, protection ou alarme, la touche (A), à la fonction déplacement de curseur vers le haut.

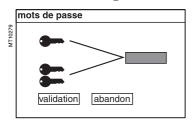
La touche

Quand aucune alarme n'est présente sur l'afficheur du Sepam et que l'on se trouve dans les menus status, protection ou alarme, la touche (v), à la fonction déplacement de curseur vers le bas.

7

IHM avancée Principes de saisie

Utilisation des mots de passe

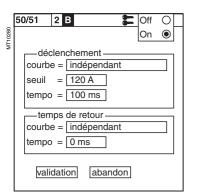

Sepam dispose de 2 mots de passe de 4 chiffres :

- le premier mot de passe symbolisé par une clé permet la modification des réglages des protections
- le deuxième mot de passe symbolisé par deux clés permet la modification des réglages des protections ainsi que celle de tous les paramètres généraux.

Les 2 mots de passe usine sont : 0000

Saisie des mots de passe

Taper sur la touche 🖨 fait apparaître l'écran suivant :


Appuyer sur la touche pour positionner le curseur sur le premier chiffre. $\boxed{0|X|X|X}$

Faire défiler les chiffres à l'aide des touches curseur () puis valider pour passer au chiffre suivant en appuyant sur la touche . Ne pas utiliser les caractères autres que les chiffres 0 à 9 pour chacun des 4 digits.

Quand le mot de passe correspondant à votre niveau d'habilitation est entré, appuyer sur la touche pour positionner le curseur sur la case validation. Presser à nouveau la touche pour confirmer.

Quand le Sepam est en mode réglage, une clé apparaît en haut de l'afficheur.

Quand le Sepam est en mode paramétrage, deux clés apparaissent en haut de l'afficheur.

L'accès aux modes réglage ou paramétrage est désactivé :

- par action sur la touche 👄
- automatiquement si aucune touche n'a été activée pendant plus de 5 mn.

Modification des mots de passe

Seul le niveau d'habilitation paramétrage (2 clés) ou le SFT2848 autorise la modification des mots de passe. La modification des mots de passe se fait dans l'écran paramètres généraux touche 🛆.

Perte des mots de passe

Les mots de passe usine ont été modifiés et les derniers mots de passe introduits ont été définitivement perdus par l'utilisateur. Contacter votre représentant SAV local.

Saisie d'un paramètre ou d'un réglage

Principe applicable à tous les écrans de Sepam

(exemple protection à maximum de courant phase)

- introduction du mot de passe
- accès à l'écran correspondant par appuis successifs sur la touche
- déplacer le curseur avec la touche ▼ pour accéder au champ désiré (exemple : courbe)
- appuyer sur la touche pour confirmer ce choix, puis choisir le type de courbe par action sur la touche de confirmer par action sur la touche confirmer pa
- appuyer sur la touche pour atteindre les champs suivants, jusqu'à atteindre la case validation. Presser la touche pour valider le réglage.

Saisie d'une valeur numérique

(exemple valeur de seuil de courant).

- le curseur étant placé sur le champ désiré à l'aide des touches "♠, ▼ " confirmer le choix en appuyant sur la touche ⊕
- appuyer sur la touche pour confirmer le choix et passer au digit suivant. Les valeurs sont saisies avec 3 chiffres significatifs et un point.

L'unité (par exemple A ou kA) est choisie à l'aide du dernier digit.

- appuyer sur la touche

 pour confirmer la saisie et sur la touche pour accéder au champ suivant
- l'ensemble des valeurs saisies ne sera effectif qu'après validation par sélection du champ validation en bas de l'écran et appui sur la touche ().

7

Paramètres par défaut, toutes applications

Configuration matérielle

repère: Sepam xxxx
modèle: MX
module MES: absent
module MSA: absent
module ACE: absent.

Paramétrage des sorties

sorties utilisées : O1 à O4
bobines à émission : O1, O3
bobines à manque : O2, O4
mode impulsionnel : non (permanent).

Inode impulsionnel . non (permanent)

Logique de commande

■ commande disjoncteur : oui

■ sélectivité logique : non

■ affectation des entrées logiques : inutilisées.

Caractéristiques générales

■ fréquence du réseau : 50 Hz

■ jeu de réglage : A

■ autorisation téléréglage : non
■ langue utilisation : français
■ type de cellule : départ
■ calibre TC : 5 A
■ nombre de TC : 3 (11, 12, 13)

nombre de TC: 3 (I1, I2, I3)
courant nominal In: 630 A
courant de base Ib: 630 A
période d'intégration: 5 mn
courant résiduel: aucun

tension nominale primaire (Unp): 20 kV
 tension nominale secondaire (Uns): 100 V
 tensions mesurées par les TP: U21, U32

■ tension résiduelle : aucune

oscilloperturbographie : 9 blocs de 2 secondes
 pré-trig pour oscilloperturbographie : 36 périodes.

Protections

■ toutes les protections sont "hors service"

■ les réglages comportent des valeurs et choix à caractères indicatifs et cohérents avec les caractéristiques générales par défaut (en particulier courant et tension nominal In et Un)

■ comportement sur déclenchement : □ accrochage : 32N, 50/51, 50N/51N

 $\hfill\Box$ participation à la commande disjoncteur : 32N, 50/51, 50N/51N

■ déclenchement oscilloperturbographie : avec.

Matrice de commande

■ activation des voyants selon marquages de face avant

■ chien de garde sur sortie O4

déclenchement oscilloperturbographie sur activation du signal pick up.

Schneider Electric

Sommaire

Principes et méthodes	8/2
Matériel d'essai et de mesure nécessaire	8/3
Examen général et actions préliminaires	8/4
Contrôle des paramètres et des réglages	8/5
Contrôle du raccordement des entrées courant résiduel et tension phase	8/6
Contrôle du raccordement des entrées courant phase et tension phase	8/9
Contrôle du raccordement de l'entrée courant résiduel	8/13
Contrôle du raccordement de l'entrée tension résiduelle	8/14
Contrôle du raccordement des entrées courant résiduel et tension résiduelle	8/15
Contrôle du raccordement des entrées et sorties logiques	8/16
Validation de la chaîne de protection complète et	
des fonctions logiques personnalisées	8/17
Fiche d'essais	8/19
Diagnostic	8/21

Principes et méthodes

▲ DANGER

RISQUES D'ÉLECTROCUTION, D'ARC ELECTRIQUE OU DE BRULURES

- La mise en service de cet équipement doit être confiée exclusivement à des personnes qualifiées, qui ont pris connaissance de toutes les instructions d'installation.
- Ne travaillez JAMAIS seul.
- Respectez les consignes de sécurité en vigueur pour la mise en service et la maintenance des équipements haute tension.
- Prenez garde aux dangers éventuels et portez un équipement protecteur individuel.

Le non-respect de ces instructions entraînera la mort ou des blessures graves.

Essais des relais de protection

Les relais de protection font l'objet de tests avant leur mise en service, dans le double but de maximaliser la disponibilité et de minimaliser le risque de dysfonctionnement de l'ensemble mis en œuvre. La problématique est de définir la consistance des tests adéquats, sachant que l'usage a toujours impliqué le relais comme maillon principal de la chaîne. Ainsi, les relais des technologies électromécanique et statique, aux performances non totalement reproductibles, doivent être soumis systématiquement à des essais détaillés afin de non seulement qualifier leur mise en œuvre, mais vérifier la réalité de leur bon état de fonctionnement et leur niveau de performance.

Le concept du relais Sepam permet de se dispenser de tels essais.

En effet :

- l'emploi de la technologie numérique garantit la reproductibilité des performances annoncées
- chacune des fonctions du Sepam a été l'objet d'une qualification intégrale en usine
- la présence d'un système d'auto-tests internes renseigne en permanence sur l'état des composants électroniques et l'intégrité des fonctions (les tests automatiques diagnostiquent par exemple le niveau des tensions de polarisation des composants, la continuité de la chaîne d'acquisition des grandeurs analogiques, la non altération de la mémoire RAM, l'absence de réglage hors tolérance) et garantit ainsi un haut niveau de disponibilité.

Ainsi, Sepam est prêt à fonctionner sans nécessiter d'essai supplémentaire de qualification le concernant directement.

Essais de mise en service du Sepam

Les essais préliminaires à la mise en service du Sepam peuvent se limiter à un contrôle de sa bonne mise en œuvre, c'est-à-dire :

- contrôler sa conformité aux nomenclatures, schémas et règles d'installation matérielle lors d'un examen général préliminaire
- vérifier la conformité des paramètres généraux et des réglages des protections saisis avec les fiches de réglage
- contrôler le raccordement des entrées courant et tension par des essais d'injection secondaire
- vérifier le raccordement des entrées et sorties logiques par simulation des informations d'entrée et forçage des états des sorties
- valider la chaîne de protection complète (incluant les adaptations éventuelles de la logique programmable)
- vérifier le raccordement des modules optionnels MSA141. Ces différents contrôles sont décrits ci-après.

Principes généraux

- tous les essais devront être réalisés, la cellule MT étant consignée et le disjoncteur MT débroché (sectionné et ouvert)
- tous les essais seront réalisés en situation opérationnelle : aucune modification de câblage ou de réglage, même provisoire pour faciliter un essai, ne sera admissible
- le logiciel SFT2848 de paramétrage et d'exploitation est l'outil de base de tout utilisateur du Sepam. Il est particulièrement utile lors des essais de mise en service. Les contrôles décrits dans ce document sont basés systématiquement sur son utilisation.

Méthode

Pour chaque Sepam:

■ procéder uniquement aux contrôles adaptés à la configuration matérielle et aux fonctions activées.

(L'ensemble exhaustif des contrôles est décrit ci-après)

■ utiliser la fiche proposée pour consigner les résultats des essais de mise en service.

Contrôle du raccordement des entrées courant et tension

Les essais par injection secondaire à réaliser pour contrôler le raccordement des entrées courant et tension sont définis en fonction :

- de la nature des capteurs de courant et de tension raccordés à Sepam, en particulier pour la mesure du courant et de la tension résiduels
- du type de générateur d'injection utilisé pour les essais, générateur triphasé ou monophasé.

Les différents essais possibles sont décrits ci-après par :

- une procédure d'essai détaillée
- le schéma de raccordement du générateur d'essai associé.

Le tableau ci-dessous précise quels sont les essais à effectuer en fonction de la nature des capteurs de mesure et du type de générateur utilisé, en indiquant la page décrivant cet essai.

Poste de livraison avec alimentation auxiliaire

Capteurs de courant	3 TC	3 TC + 1 tore homopolaire	3 TC	3 TC + 1 tore homopolaire
Capteurs de tension	3 TP	3 TP	2 TP phase + 1 TP résiduel	2 TP phase + 1 TP résiduel
Générateur	8/6	8/6	8/6	8/6
triphasé		8/13	8/14	8/15
Générateur	8/7	8/7	8/12	8/12
monophasé		8/13	8/14	8/15

Poste de livraison sans alimentation auxiliaire

Capteurs de courant	3 TC		
Capteurs de tension	3 TP		
Générateur triphasé	8/6		
Générateur monophasé	8/7		

8

Matériel d'essai et de mesure nécessaire

Générateurs

- générateur double de tension et de courant alternatifs sinusoïdaux :
- □ de fréquence 50 ou 60 Hz (selon pays)
- □ réglable en courant jusqu'au moins 5 Aeff
- □ réglable jusqu'à la tension composée secondaire nominale des TP
- □ réglable en déphasage relatif (V, I)
- □ de type triphasé ou monophasé
- générateur de tension continue :
- □ réglable de 48 à 250 V CC, pour adaptation au niveau de tension de l'entrée logique testée.

Accessoires

- fiche avec cordon correspondant à la boîte à bornes d'essais "courant" installée
- fiche avec cordon correspondant à la boîte à bornes d'essais "tension" installée
- cordon électrique avec pinces, grippe-fils ou pointes de touche.

Appareils de mesure (intégrés au générateur ou indépendants)

- 1 ampèremètre, 0 à 5 Aeff
- 1 voltmètre, 0 à 230 Veff
- 1 phasemètre (si déphasage (V, I) non repéré sur le générateur de tension et courant).

Equipement informatique

- PC de configuration minimale :
- ☐ Microsoft Windows 2000 ou XP
- □ Processeur Pentium 133 MHz ou plus
- □ 64 Mo RAM
- □ 100 Mo de libre sur le disque dur
- □ lecteur CD-ROM
- □ écran 1024 x 768
- logiciel SFT2848
- câble CCA783 de liaison série entre le PC et Sepam.

Documents

- schéma complet de raccordement du Sepam et de ses modules additionnels, avec :
- □ raccordement des entrées courant phase aux TC correspondants via la boîte à bornes d'essais
- □ raccordement de l'entrée courant résiduel
- □ raccordement des entrées tension de phase aux TP correspondants via la boîte à bornes d'essais
- □ raccordement de l'entrée tension résiduelle aux TP correspondants via la boîte à bornes d'essais
- □ raccordement des entrées et sorties logiques
- □ raccordement des sondes de température
- □ raccordement de la sortie analogique
- nomenclatures et règles d'installation matérielle
- ensemble des paramètres et réglages du Sepam, disponible sous forme de dossier papier.

Q

Examen général et actions préliminaires

Vérifications à effectuer avant la mise sous tension

Outre le bon état mécanique des matériels, vérifier à partir des schémas et nomenclatures établis par l'installateur :

- le repérage du Sepam et de ses accessoires déterminé par l'installateur
- la mise à la terre correcte du Sepam (par la borne 17 du connecteur 20 points)
- le branchement correct de la tension auxiliaire (borne 1 : alternatif ou polarité positive ; borne 2 : alternatif ou polarité négative)
- la présence éventuelle d'un tore de mesure du courant résiduel ou/et des modules additionnels associés au Sepam
- la présence de boîtes à bornes d'essais en amont des entrées courant et des entrées tension
- la conformité des branchements entre les bornes du Sepam et les boîtes à bornes d'essais.

Connexions

Vérifier le serrage des connexions (les matériels étant hors tension). Les connecteurs du Sepam doivent être correctement embrochés et verrouillés.

Mise sous tension

- 1. Mettre sous tension l'alimentation auxiliaire.
- Vérifier que le Sepam réalise alors la séquence suivante d'une durée d'environ 6 secondes :
- voyants vert ON et rouge allumés
- extinction du voyant rouge
- armement du contact "chien de garde".

Le premier écran affiché est l'écran de mesure de courant phase pour les applications E12, E13, E22, E23, E32, E33 et l'écran de paramètres généraux pour les applications E11, E14, E15.

Mise en œuvre du logiciel SFT2848 sur PC1

- 1. Mettre en service le PC
- 2. Raccorder le port série RS 232 du PC au port de communication en face avant du Sepam à l'aide du câble CCA783.
- 3. Démarrer le logiciel SFT2848, à partir de son icône.
- 4. Choisir de se connecter au Sepam à contrôler.

Identification du Sepam

- 1. Relever le numéro de série du Sepam sur l'étiquette collée sur le flasque droit de l'unité de base.
- 2. Relever le type et la version logicielle du Sepam à l'aide du logiciel SFT2848, écran "Diagnostic Sepam".
- 3. Noter le numéro de série, le type et la version du Sepam sur la fiche de résultats d'essais.

Contrôle des paramètres et des réglages

Détermination des paramètres et réglages

L'ensemble des paramètres et réglages du Sepam aura été déterminé auparavant par le service d'études en charge de l'application, et devra être approuvé par le client.

Il est supposé que cette étude aura été menée avec toute l'attention nécessaire, voire même aura été consolidée par une étude de sélectivité.

L'ensemble des paramètres et réglages du Sepam devra être disponible lors de la mise en service :

- sous forme de dossier papier (avec le logiciel SFT2848, le dossier des paramètres et réglages d'un Sepam peut être soit imprimé directement, soit exporté dans un fichier texte pour être mis en forme)
- et éventuellement, sous forme de fichier à télécharger dans Sepam à l'aide du logiciel SFT2848.

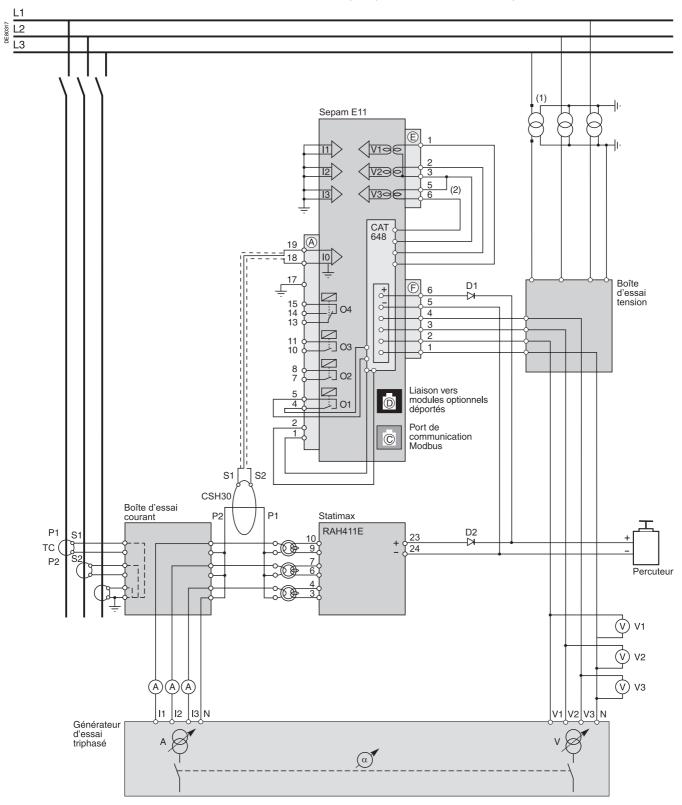
Remarque : fichiers de pré-paramétrage

Pour chaque application, est fourni un fichier de pré-paramétrage (répertoire : CD Serie 48\Pré paramétrage\Fichiers) qui permet de configurer et de paramétrer le Sepam série 48 pour une utilisation nominale répondant au cahier des charges EDF. Un fichier de documentation du paramétrage associé au fichier de pré-paramétrage (répertoire : CD Serie 48\Pré paramétrage\Documentation) permet de décrire les entrées / sorties utilisées, les réglages des protections et la signalisation en face avant.

Contrôle des paramètres et des réglages

Contrôle à effectuer lorsque les paramètres et les réglages du Sepam ne sont pas saisis ou téléchargés lors des essais de mise en service, pour valider la conformité des paramètres et des réglages saisis avec les valeurs déterminées lors de l'étude. Le but de ce contrôle n'est pas de valider la pertinence des paramètres et des réglages.

- 1. Parcourir l'ensemble des écrans de paramétrage et de réglage du logiciel SFT2848 en respectant l'ordre proposé en mode quidé.
- 2. Comparer pour chaque écran les valeurs saisies dans le Sepam aux valeurs inscrites dans le dossier des paramètres et réglages.
- 3. Corriger les paramètres et réglages qui ne sont pas correctement saisis ; procéder comme indiqué au chapitre Utilisation "IHM expert" de ce manuel.


Conclusion

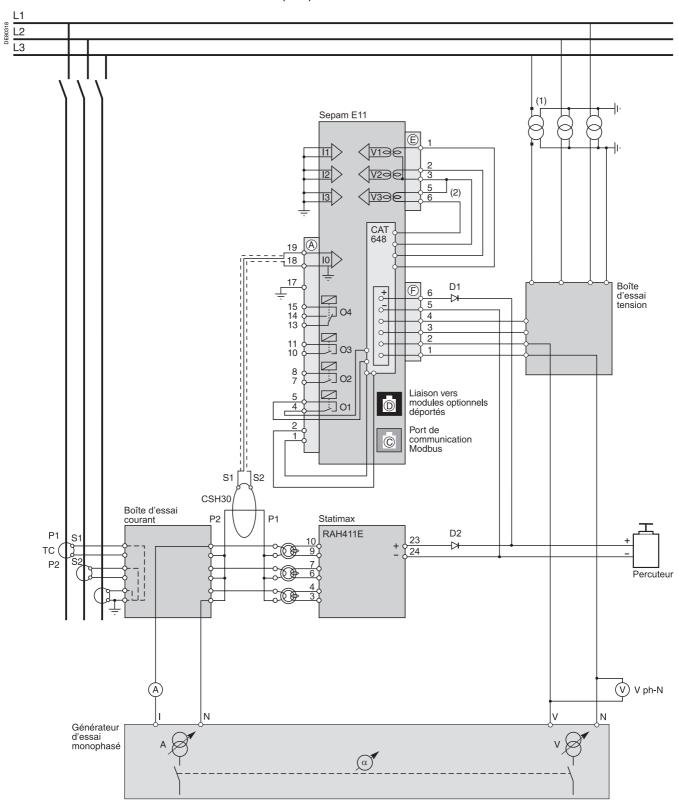
La vérification étant effectuée et concluante, à partir de cette phase, il conviendra de ne plus modifier les paramètres et réglages qui seront considérés comme définitifs. En effet, pour être concluants, les essais qui vont suivre devront être réalisés avec les paramètres et réglages définitifs ; aucune modification provisoire de l'une quelconque des valeurs saisies, même dans le but de faciliter un essai, ne sera admissible.

Contrôle du raccordement des entrées courant résiduel et tension phase Avec générateur triphasé

Procédure

- 1. Brancher le générateur triphasé de tension et de courant sur les boîtes à bornes d'essais correspondantes, à l'aide des fiches prévues, suivant le schéma approprié en fonction du nombre de TP raccordés à Sepam :
- schéma de principe avec 3 TP raccordés à Sepam.

La borne 15 du RAH411E (Statimax) ne doit pas être connectée. Dans le cas d'un retrofit le fil raccordé à cette borne doit être débranché.


Nota: Diodes D1 et D2: 2 diodes type 1N4007 1000 V - 1 A

Contrôle du raccordement des entrées courant résiduel et tension phase

Avec générateur monophasé et tensions délivrées par 3 TP

Procédure

1. Brancher le générateur monophasé de tension et de courant sur les boîtes à bornes d'essais correspondantes, à l'aide des fiches prévues, suivant le schéma de principe ci-dessous :

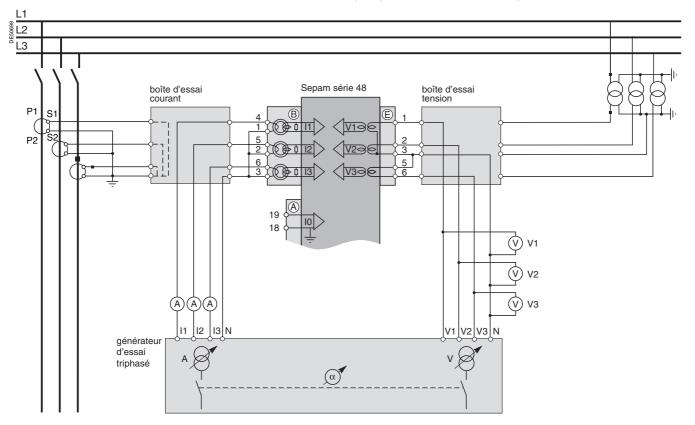
Î

La borne 15 du RAH411E (Statimax) ne doit pas être connectée. Dans le cas d'un retrofit le fil raccordé à cette borne doit être débranché.

Nota: Diodes D1 et D2: 2 diodes type 1N4007 1000 V - 1 A

Contrôle du raccordement des entrées courant résiduel et tension phase

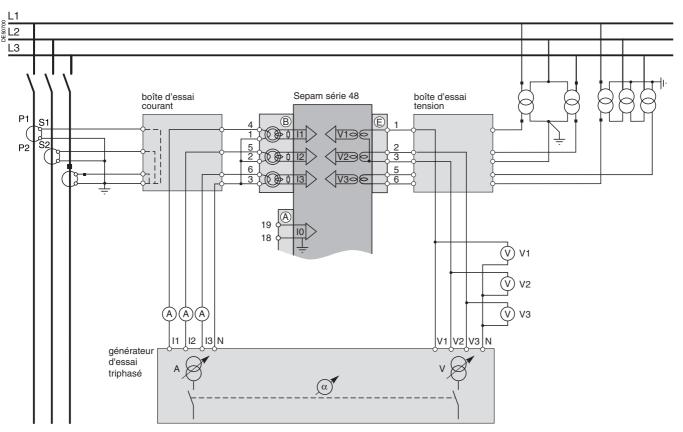
Avec générateur monophasé et tensions délivrées par 3 TP


Procédure (suite)

- 2. Mettre le générateur en service
- 3. Appliquer entre les bornes d'entrée tension phase 1 du Sepam (via la boîte d'essais) la tension V-N du générateur réglée égale à la tension simple secondaire nominale des TP (soit Vns = Uns/ $\sqrt{3}$).
- 4. Injecter sur les bornes d'entrée courant phase 1 du Sepam (via la boîte d'essais) le courant I du générateur, réglé égal au courant secondaire nominal des TC (soit
- 1 A ou 5 A) et en phase avec la tension V-N appliquée (soit déphasage du générateur $\alpha(\text{V-N, I})=0^{\circ}).$
- 5. Contrôler à l'aide du logiciel SFT2848 que :
- la valeur indiquée du courant résiduel l0 est égale environ au courant primaire nominal du TC
- la valeur indiquée de la tension résiduelle V0 est égale environ à la tension simple primaire nominale du TP (Vnp = Unp/ $\sqrt{3}$)
- la valeur indiquée du déphasage φ 0 (V0, I0) entre le courant I1 et la tension V1 est sensiblement égale à 0°.
- 6. Procéder de même par permutation circulaire avec les tensions et courants des phases 2 et 3.
- 7. Mettre le générateur hors service.

Contrôle du raccordement des entrées

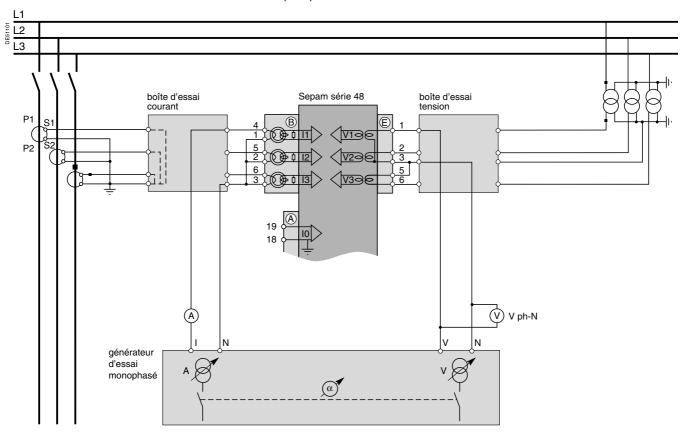
Procédure


- 1. Brancher le générateur triphasé de tension et de courant sur les boîtes à bornes d'essais correspondantes, à l'aide des fiches prévues, suivant le schéma approprié en fonction du nombre de TP raccordés à Sepam :
- schéma de principe avec 3 TP raccordés à Sepam

8

Contrôle du raccordement des entrées courant phase et tension phase Avec générateur triphasé

■ schéma de principe avec 2 TP raccordés à Sepam


- 2. Mettre le générateur en service.
- 3. Appliquer les 3 tensions V1-N, V2-N, V3-N du générateur, équilibrées et réglées égales à la tension simple secondaire nominale des TP (soit Vns = Uns/ $\sqrt{3}$).
- 4. Injecter les 3 courants I1, I2, I3 du générateur, équilibrés, réglés égaux au courant secondaire nominal des TC (soit 1 A ou 5 A) et en phase avec les tensions appliquées (soit déphasages du générateur :
- $\alpha 1(V1-N, I1) = \alpha 2(V2-N, I2) = \alpha 3(V3-N, I3) = 0^{\circ}).$
- 5. Contrôler à l'aide du logiciel SFT2848 que :
- la valeur indiquée de chacun des courants de phase I1, I2, I3 est égale environ au courant primaire nominal des TC
- la valeur indiquée de chacune des tensions simples V1, V2, V3 est égale environ à la tension simple primaire nominale du TP (Vnp = Unp/ $\sqrt{3}$)
- la valeur indiquée de chaque déphasage ϕ 1(V1, I1), ϕ 2(V2, I2), ϕ 3(V3, I3) entre le courant I1, I2 ou I3 et respectivement la tension V1, V2 ou V3 est sensiblement égale à 0°.
- 6. Mettre le générateur hors service.

Contrôle du raccordement des entrées courant phase et tension phase

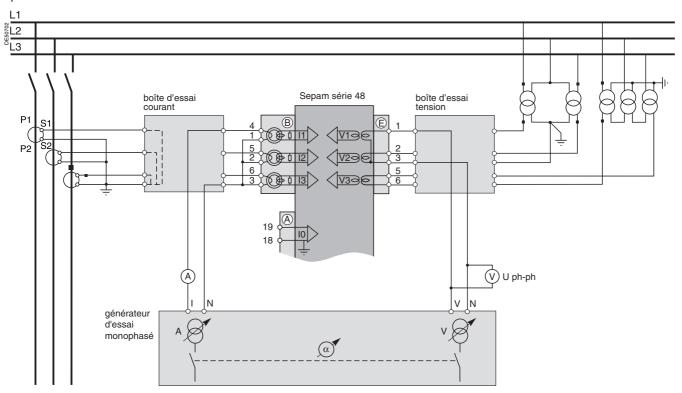
Avec générateur monophasé et tensions délivrées par 3 TP

Procédure

1. Brancher le générateur monophasé de tension et de courant sur les boîtes à bornes d'essais correspondantes, à l'aide des fiches prévues, suivant le schéma de principe ci-dessous :

- 2. Mettre le générateur en service.
- 3. Appliquer entre les bornes d'entrée tension phase 1 du Sepam (via la boîte d'essais) la tension V-N du générateur réglée égale à la tension simple secondaire nominale des TP (soit Vns = Uns/ $\sqrt{3}$).
- 4. Injecter sur les bornes d'entrée courant phase 1 du Sepam (via la boîte d'essais) le courant I du générateur, réglé égal au courant secondaire nominal des TC (soit 1 A ou 5 A) et en phase avec la tension V-N appliquée (soit déphasage du générateur α (V-N, I) = 0°).
- 5. Contrôler à l'aide du logiciel SFT2848 que :
- la valeur indiquée du courant de phase I1 est égale environ au courant primaire nominal du TC
- \blacksquare la valeur indiquée de la tension simple V1 est égale environ à la tension simple primaire nominale du TP (Vnp = Unp/ $\sqrt{3}$)
- \blacksquare la valeur indiquée du déphasage φ1(V1, I1) entre le courant I1 et la tension V1 est sensiblement égale à 0°
- 6. Procéder de même par permutation circulaire avec les tensions et courants des phases 2 et 3, pour contrôler les grandeurs I2, V2, φ 2(V2, I2) et I3, V3, φ 3(V3, I3). 7. Mettre le générateur hors service.

Contrôle du raccordement des entrées courant phase et tension phase


Avec générateur monophasé et tensions délivrées par 2 TP

Description

Contrôle à effectuer lorsque les tensions sont fournies par un montage de 2 TP raccordés à leur primaire entre phases de la tension distribuée, ce qui implique que la tension résiduelle soit obtenue à l'extérieur du Sepam (par 3 TP raccordés à leur secondaire en triangle ouvert) ou éventuellement ne soit pas utilisée pour la protection.

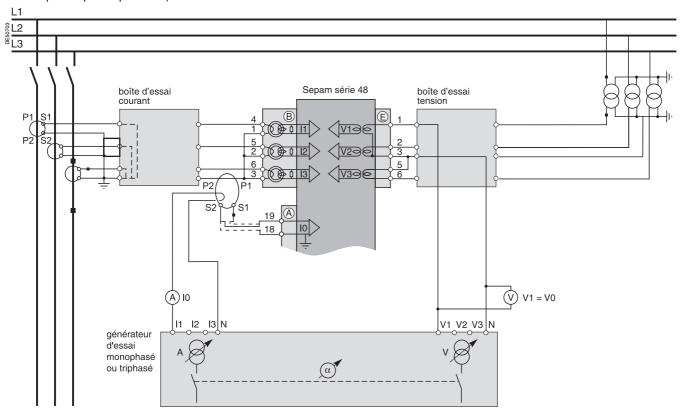
Procédure

1. Brancher le générateur monophasé de tension et de courant sur les boîtes à bornes d'essais correspondantes, à l'aide des fiches prévues, suivant le schéma de principe ci-dessous :

- 2. Mettre le générateur en service.
- 3. Appliquer entre les bornes 1-3 des entrées tension du Sepam (via la boîte d'essais) la tension délivrée aux bornes V-N du générateur, réglée égale à $\sqrt{3}$ /2 fois la tension composée secondaire nominale des TP (soit $\sqrt{3}$ Uns/2).
- 4. Injecter sur l'entrée courant phase 1 du Sepam (via la boîte d'essais) le courant I du générateur, réglé égal au courant secondaire nominal des TC (soit 1 A ou 5 A) et en phase avec la tension V-N appliquée (soit déphasage du générateur α (V-N, I) = 0 °).
- 5. Contrôler à l'aide du logiciel SFT2848 que :
- la valeur indiquée du courant phase l1 est égale environ au courant primaire nominal du TC (Inp)
- la valeur indiquée de la tension simple V1 est égale environ à la tension simple primaire nominale du TP (Vnp = Unp/ $\sqrt{3}$)
- \blacksquare la valeur indiquée du déphasage $\phi 1 (V1, I1)$ entre le courant I1 et la tension V1 est sensiblement égale à 0°
- 6. Procéder de même pour le contrôle des grandeurs I2, V2, φ2(V2, I2) :
- appliquer en parallèle entre les bornes 1-3 d'une part et 2-3 d'autre part des entrées tension du Sepam (via la boîte d'essais) la tension V-N du générateur réglée égale à $\sqrt{3}$ Uns/2
- injecter sur l'entrée courant phase 2 du Sepam (via la boîte d'essais) un courant l réglé égal à 1 A ou 5 A et en opposition de phase avec la tension V-N (soit α(V-N, I) = 180°)
- obtenir I2 \cong Inp, V2 \cong Vnp = Unp/ $\sqrt{3}$ et φ 2 \cong 0°
- 7. Réaliser également le contrôle des grandeurs I3, V3, φ3(V3, I3) :
- appliquer entre les bornes 2-3 des entrées tension du Sepam (via la boîte d'essais) la tension V-N du générateur réglée égale à √3 Uns/2
- injecter sur l'entrée courant phase 3 du Sepam (via la boîte d'essais) un courant réglé égal à 1 A ou 5 A et en phase avec la tension V-N (soit α(V-N, I) = 0°)
- obtenir I3 \cong Inp, V3 \cong Vnp = Unp/ $\sqrt{3}$ et ϕ 3 \cong 0°
- 8. Mettre le générateur hors service.

Contrôle du raccordement de l'entrée courant résiduel

Description


Contrôle à effectuer lorsque le courant résiduel est mesuré par un capteur spécifique tel que :

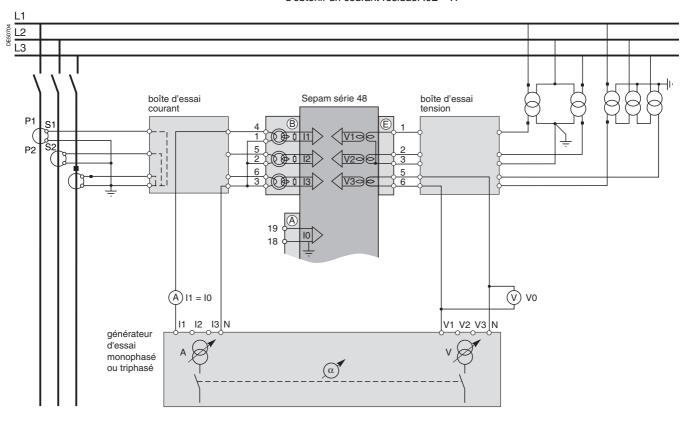
- tore homopolaire CSH120 ou CSH200
- tore adaptateur CSH30 (qu'il soit placé dans le secondaire d'un seul TC 1 A ou 5 A embrassant les 3 phases, ou dans la liaison au neutre des 3 TC de phase 1 A ou 5 A)
- autre tore homopolaire raccordé à un adaptateur ACE990,

et lorsque la tension résiduelle est calculée dans le Sepam ou éventuellement n'est pas calculable (donc non disponible pour la protection).

Procédure

- 1. Brancher suivant le schéma ci-dessous :
- un fil entre les bornes courant du générateur pour réaliser une injection de courant au primaire du tore homopolaire ou du TC, le fil passant à travers le tore ou le TC dans le sens P1-P2 avec P1 côté barres et P2 côté câble
- éventuellement les bornes tension du générateur sur la boîte à bornes d'essais tension, de façon à n'alimenter que l'entrée tension phase 1 du Sepam, donc d'obtenir une tension résiduelle V0 = V1

- 2. Mettre le générateur en service.
- 3. Eventuellement appliquer une tension V-N réglée égale à la tension simple secondaire nominale du TP (soit Vns = Uns/ $\sqrt{3}$).
- 4. Injecter un courant I réglé à 5 A, et éventuellement en phase avec la tension V-N appliquée (soit déphasage du générateur $\alpha(V-N, I)=0^{\circ}$).
- 5. Ccontrôler à l'aide du logiciel SFT2848 que :
- la valeur indiquée du courant résiduel mesuré I0 est égale environ à 5 A
- éventuellement la valeur indiquée de la tension résiduelle calculée V0 est égale environ à la tension simple primaire nominale des TP (soit Vnp = Unp/ $\sqrt{3}$),
- \blacksquare éventuellement la valeur indiquée du déphasage $\varphi 0 (V0, I0)$ entre le courant I0 et la tension V0 est sensiblement égale à 0°
- 6. Mettre le générateur hors service.


Contrôle du raccordement de l'entrée tension résiduelle

Description

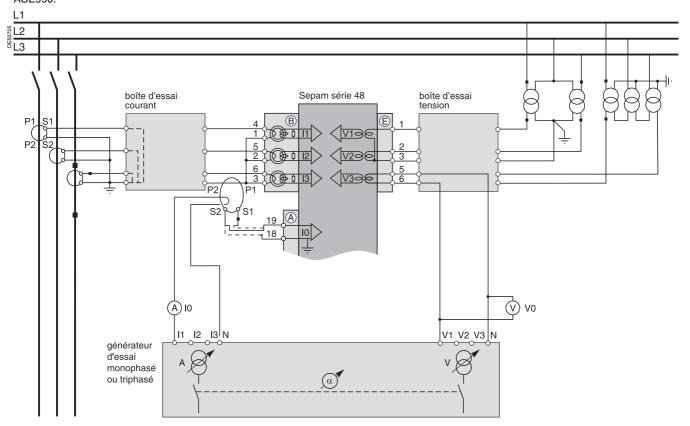
Contrôle à effectuer lorsque la tension résiduelle est délivrée par 3 TP aux secondaires raccordés en triangle ouvert, et lorsque le courant résiduel est calculé dans le Sepam ou éventuellement n'est pas utilisé pour la protection.

Procédure

- 1. Brancher suivant le schéma ci-dessous :
- les bornes tension du générateur sur la boîte à bornes d'essais tension, de façon à n'alimenter que l'entrée tension résiduelle du Sepam
- \blacksquare éventuellement les bornes courant du générateur sur la boîte à bornes d'essais courant, de façon à n'alimenter que l'entrée courant phase 1 du Sepam, donc d'obtenir un courant résiduel $I0\Sigma = I1$

- 2. Mettre le générateur en service.
- 3. Appliquer une tension V-N réglée égale à la tension secondaire nominale des TP montés en triangle ouvert (soit, selon le cas, Uns/ $\sqrt{3}$ ou Uns/3).
- 4. Eventuellement injecter un courant l'réglé égal au courant secondaire nominal des TC (soit 1 A ou 5 A) et en phase avec la tension appliquée (soit déphasage du générateur $\alpha(V-N, I) = 0^{\circ}$).
- 5. Contrôler à l'aide du logiciel SFT2848 que :
- la valeur indiquée de la tension résiduelle mesurée V0 est égale environ à la tension simple primaire nominale des TP (soit $Vnp = Unp/\sqrt{3}$)
- lacktriangle éventuellement la valeur indiquée du courant résiduel calculé $I0\Sigma$ est égale environ au courant primaire nominal des TC
- \blacksquare éventuellement la valeur indiquée du déphasage $\phi0\Sigma$ (V0, I0 Σ) entre le courant I0 Σ et la tension V0 est sensiblement égale à 0 $^\circ$
- 6. Mettre le générateur hors service.

Contrôle du raccordement des entrées courant résiduel et tension résiduelle

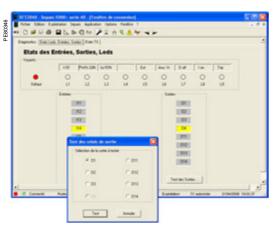

Description

Contrôle à effectuer dans le cas où la tension résiduelle est délivrée par 3 TP aux secondaires raccordés en triangle ouvert et où le courant résiduel est obtenu par un capteur spécifique tel que :

- tore homopolaire CSH120 ou CSH200
- tore adaptateur CSH30 (qu'il soit placé dans le secondaire d'un seul TC 1 A ou 5 A embrassant les 3 phases, ou dans la liaison au neutre des 3 TC de phase 1 A ou 5 A)
- autre tore homopolaire raccordé à un adaptateur ACE990.


Procédure

- 1. Brancher suivant le schéma ci-dessous :
- les bornes tension du générateur sur la boîte à bornes d'essais tension à l'aide de la fiche prévue,
- un fil entre les bornes courant du générateur pour réaliser une injection de courant au primaire du tore homopolaire ou du TC, le fil passant à travers le tore ou le TC dans le sens P1-P2 avec P1 côté barres et P2 côté câble.



- 2. Mettre le générateur en service.
- 3. Appliquer une tension V-N réglée égale à la tension secondaire nominale des TP raccordés en triangle ouvert (soit Uns/√3 ou Uns/3).
- 4. Injecter un courant I réglé à 5 A, et en phase avec la tension appliquée (soit déphasage du générateur $\alpha(V-N, I) = 0^{\circ}$).
- 5. Contrôler à l'aide du logiciel SFT2848 que :
- la valeur indiquée du courant résiduel mesuré 10 est égale environ à 5 A
- \blacksquare la valeur indiquée de la tension résiduelle mesurée V0 est égale environ à la tension simple primaire nominale des TP (soit Vnp = Unp/ $\sqrt{3}$)
- la valeur indiquée du déphasage ϕ 0(V0, I0) entre le courant I0 et la tension V0 est sensiblement égale à 0°
- 6. Mettre le générateur hors service.

Contrôle du raccordement des entrées et sorties logiques

Ecran "Etat des entrées, sorties, voyants".

Ecran "Diagnostic Sepam et test des relais de sortie".

Contrôle du raccordement des entrées logiques

Procédure

Procéder comme suit pour chaque entrée :

- 1. Si la tension d'alimentation de l'entrée est présente, court-circuiter le contact délivrant l'information logique à l'entrée, à l'aide d'un cordon électrique.
- 2. Si la tension d'alimentation de l'entrée n'est pas présente, appliquer sur la borne du contact reliée à l'entrée choisie, une tension fournie par le générateur de tension continue tout en respectant la polarité et le niveau convenables.
- 3. Constater le changement d'état de l'entrée à l'aide du logiciel SFT2848, sur l'écran "Etat des entrées, sorties, voyants".
- 4. A la fin de l'essai, si nécessaire, activer le bouton Reset sur le SFT2848 pour effacer tout message et remettre toute sortie au repos.

Contrôle du raccordement des sorties logiques

Procédure

Contrôle réalisé grâce à la fonctionnalité "Test des relais de sortie" activée à partir du logiciel SFT2848, écran "Diagnostic Sepam".

Seule la sortie O4, lorsqu'elle est utilisée en tant que "chien de garde", ne peut être testée.

Cette fonctionnalité nécessite la saisie préalable du mot de passe "Paramétrage"

- 1. Activer chaque relais à l'aide des boutons du logiciel SFT2848. Le relais de sortie activé change d'état pendant une durée de 5 secondes.
- 2. Constater le changement d'état de chaque relais de sortie par le fonctionnement de l'appareillage associé (si celui-ci est prêt à fonctionner et alimenté), ou brancher un voltmètre aux bornes du contact de sortie (la tension s'annule lorsque le contact se ferme)
- 3. A la fin de l'essai, éventuellement activer le bouton Reset sur l'écran "Alarmes" du SFT2848 pour effacer tout message et remettre toute sortie au repos.

8

8/17

Validation de la chaîne de protection complète et des fonctions logiques personnalisées

Principe

La chaîne de protection complète est validée lors de la simulation d'un défaut entraînant le déclenchement de l'appareil de coupure par Sepam.

Procédure

- 1. Sélectionner une des fonctions de protection provoquant le déclenchement de l'appareil de coupure et séparément, selon son (leur) incidence dans la chaîne, la (les) fonction(s) en relation avec les parties (re)programmées de la logique.
- 2. Selon la (les) fonction(s) sélectionnée(s), injecter un courant ou/et appliquer une tension correspondant à un défau.
- 3. Constater le déclenchement de l'appareil de coupure, et pour les parties adaptées de la logique le fonctionnement de celles-ci.

A la fin de l'ensemble des contrôles par application de tension et de courant, remettre en place les couvercles des boîtes à bornes d'essais.

Contrôle du raccordement des modules optionnels

Contrôle du raccordement de la sortie analogique du module MSA141

- 1. Identifier la mesure associée par paramétrage à la sortie analogique à l'aide du logiciel SFT2848.
- 2. Simuler si nécessaire la mesure associée à la sortie analogique par injection.
- 3. Contrôler la cohérence entre la valeur mesurée par Sepam et l'indication fournie par l'enregistreur raccordé à la sortie analogique.

6

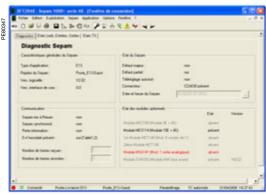
Fiche d'essais Sepam série 48

Affaire : Tableau : Cellule :	N	luméro de série		
Contrôles d'ensemb				
	le le contrôle est réalisé	et concluant		
Nature du contrôle	avent mine sous tansion			
Examen général préliminaire, Mise sous tension	avant mise sous tension			
-				
Paramètres et réglages				
Raccordement des entrées lo				
Raccordement des sorties log				
Validation de la chaîne de pro	•			
Raccordement de la sortie an				
	s courant et tension le le contrôle est réalisé (•		
Nature du contrôle	Essai réalisé	Résultat	Affichage	
Raccordement des entrées courant phase et tension phase	Injection secondaire du courant nominal des TC, soit 1 A ou 5 A	Courant nominal primaire des TC	I1 =	
			I2 =	
			I3 =	
	Injection secondaire de tension phase (la valeur à injecter dépend de l'essai	Tension simple nominale primaire des TP Unp/√3	V1 =	
	réalisé)		V2 =	
			V3 =	
		Déphasage $\varphi(V, I) \approx 0^{\circ}$	φ1 =	
			φ2 =	
			φ3 =	
Par :Remarques :				

Fiche d'essais Sepam série 48

Affaire :		Type de Sepam		
Tableau :		Numéro de série		
Cellule :		Version logicielle V		
Contrôles d'ensemb	le			
Cocher la case □ lorsqu	e le contrôle est réalisé	et concluant		
Nature du contrôle	Essai réalisé	Résultat	Affichage	
Raccordement de l'entrée courant résiduel	Injection de 5 A au primaire du tore homopolaire	Valeur du courant injecté	10 =	
	Eventuellement, injection secondaire de la tension simple nomin	Tension simple nominale primaire des TP Unp/√3 ale	V0 =	
	d'un TP phase Uns/√3	Déphasage φ(V0, I0) ≈ 0°	φ0 =	
Raccordement de l'entrée tension résiduelle	Injection secondaire de la tension nominale des TP en triangle ouvert (Uns/√3 ou Uns/3)	Tension simple nominale primaire des TP Unp/√3	V0 =	
	Eventuellement, injection secondaire du courant nominal des TC	Courant nominal primaire des TC	10 =	
	soit 1 A ou 5 A	Déphasage φ(V0, I0) ≈ 0°	φ0 =	
Raccordement des entrées courant résiduel et tension résiduelle	-	Valeur du courant injecté	10 =	
	Injection secondaire de la tension nominale des TP en triangle ouvert	Tension simple nominale primaire des TP Unp/√3	V0 =	
	(Uns/√3 ou Uns/3)	Déphasage φ(V0, I0) ≈ 0°	φ0 =	

Essais réalisés le :	Signatures
Par :	
Remarques :	


Diagnostic

Sepam dispose de nombreux autotests réalisés dans l'unité de base et dans les modules

complémentaires. Ces autotests ont pour but :

- de détecter les défaillances pouvant conduire à un déclenchement intempestif ou à un non déclenchement sur défaut
- de mettre le Sepam en position de repli sûre pour éviter toute manœuvre intempestive
- d'alerter l'exploitant pour effectuer une opération de maintenance

L'écran "Diagnostic Sepam" du logiciel SFT2848 permet d'accéder aux informations sur l'état de l'unité de base et des modules optionnels.

Ecran "Diagnostic Sepam".

Arrêt de l'unité de base en position de repli

L'unité de base passe en position de repli dans les conditions suivantes :

- détection d'une défaillance interne par les autotests
- absence du module adaptateur TT et percuteur pour un Sepam série 48 E11
- absence de connecteur d'adaptation capteur (CCA630) sauf pour E14, E15
- absence du module MES lorsque celui-ci a été configuré
- perte d'alimentation (tension d'alimentation auxiliaire < tension d'alimentation mini).

Cette position de repli se traduit par :

- le voyant ON est allumé
- le voyant de l'unité de base est allumé fixe
 le relais O4 "chien de garde" est en position défaut
- les relais de sortie sont au repos
- toutes les protections sont inhibées
- l'afficheur affiche le message de défaut.

Nota: lorsque la cause du passage en position de repli est la perte d'alimentation, la signalisation n'est pas garantie

Marche dégradée

L'unité de base est en état de marche (toutes les protections activées sont opérationnelles) et signale qu'un des modules optionnels tels que MSA141 est en défaut ou bien qu'un module est configuré mais n'est pas raccordé.

Ce mode de fonctionnement se traduit par :

- le voyant ON est allumé
- panne (éteint)
- lacksquare le voyant $rac{e}{2}$ du module MSA est en défaut allumé en fixe.

L'afficheur affiche un message de défaut partiel et indique la nature du défaut par un code :

- code 1 : défaut de la liaison inter-modules
- code 4 : module MSA indisponible.

Ce mode de marche du Sepam est également transmis par la communication.

A ATTENTION

RISQUE D'ENDOMMAGEMENT DU SEPAM

- N'ouvrez pas l'unité de base Sepam.
- Ne tentez pas de réparer les composants de la gamme Sepam, unité de base ou accessoire.

Le non-respect de ces instructions peut entraîner des dommages matériels.

Echange réparation

Lorsque le Sepam ou un module est considéré défaillant, procéder à son remplacement par un produit ou un module neuf, ces éléments n'étant pas réparables.

A DANGER

RISQUES D'ÉLECTROCUTION, D'ARC **ELECTRIQUE OU DE BRULURES**

- La maintenance de cet équipement doit être confiée exclusivement à des personnes qualifiées, qui ont pris connaissance de toutes les instructions d'installation.
- Ne travaillez JAMAIS seul.
- Respectez les consignes de sécurité en vigueur pour la mise en service et la maintenance des équipements haute tension.
- Prenez garde aux dangers éventuels et portez un équipement protecteur individuel.

Le non-respect de ces instructions entraînera la mort ou des blessures graves.

Maintenance préventive

Généralités

Les entrées et sorties logiques et les entrées analogiques sont les parties de Sepam les moins couvertes par les autotests. (Voir "Liste des autotests qui placent Sepam en position de repli" page 4/18).

Il convient de les tester lors d'une opération de maintenance.

La périodicité recommandée de la maintenance préventive est de 5 ans.

Essais de maintenance

Pour effectuer la maintenance de Sepam, reportez-vous au paragraphe "Principes et méthodes" page 8/2. Réalisez tous les essais de mise en service préconisés en fonction du type de Sepam à tester.

Essayez en priorité les entrées et sorties logiques qui interviennent dans le déclenchement du disjoncteur.

Un test de la chaîne complète comprenant le disjoncteur est également recommandé.

Informations

Sommaire

Informations nécessaires à la commande

9/2

9/1

Informations nécessaires à la commande

Pour faciliter votre choix et établir votre bon de commande, vous pouvez joindre cette page à votre commande en indiquant la quantité demandée dans l'espace ______ et en cochant les cases 🔀 correspondant à votre choix.

Sepam série 48

Poste sans alimentation auxiliaire				
Type d'application	Type d'IHM	Capteurs	Connecteurs	
E11 (59760) □	IHM avancée (59605) □	Module adaptateur TT CAT648 (59633) □		
		Adaptation pour transformateur de courant sur entrée courant résiduel CSH30 (59634) □		

		CSH30 (59634) LI			
Poste avec alimentation auxiliaire					
Type d'application	Type d'IHM	Capteurs	Connecteurs		
E12 (59761)	IHM avancée (59605) □	TC 1 A / 5 A CCA630 (59630) □	Connecteur à vis 20 points CCA620 (59668) □		
E13 (59762) □			Connecteur à vis 6 points CCA626 (59656) □		
E14 (59763)					
E15 (59764) 🗆					
E16 (59765) 🗆					
E22 (59766) 🗆					
E23 (59767) 🗆					
E32 (59768) 🗆					
E33 (59769) 🗆					

Modules séparés et accessoires optionnels

Quantité	Désignation	Référence	N° article
	Capteurs de courant résiduel (Ø 120)	CSH120	59635
	Capteurs de courant résiduel (Ø 200)	CSH200	59636
	Adaptateur tore	ACE990	59672
	Module 10 entrées + 4 sorties	MES114	59646
	Module 10 entrées + 4 sorties (110-125 V CC et CA)	MES114E	59651
	Module 10 entrées + 4 sorties (220-250 V CC et CA)	MES114F	59652
	Interface réseau RS 485 2 fils	ACE949-2	59642
	Interface réseau RS 485 4 fils	ACE959	59643
	Interface fibre optique	ACE937	59644
	Câble de communication L = 3 m	CCA612	59663
	Câble de liaison module déporté L = 0,6 m	CCA770	59660
	Câble de liaison module déporté L = 2 m	CCA772	59661
	Câble de liaison module déporté L = 4 m	CCA774	59662
	Kit logiciel de paramétrage et d'exploitation sur PC (1)	kit SFT2848	59673
	Convertisseur RS 485 / RS 232	ACE909-2	59648
	Adaptateur RS 485 / RS 485 (CA)	ACE919CA	59649
	Adaptateur RS 485 / RS 485 (CC)	ACE919CC	59650
	Module de sortie analogique	MSA141	59647

⁽¹⁾ Incluant le cordon de liaison CCA612.

9/3

Schneider Electric Industries SAS

89, boulevard Franklin Roosevelt F - 92505 Rueil-Malmaison Cedex (France) Tel: +33 (0)1 41 29 85 00

http://www.schneider-electric.com

En raison de l'évolution des normes et du matériel, les caractéristiques indiquées par le texte et les images de ce document ne nous engagent qu'après confirmation par nos services.

Ce document a été imprimé sur du papier écologique

Réalisation : Schneider Electric Publication : Schneider Electric Impression :