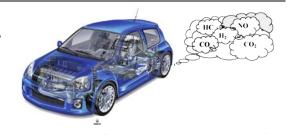
La dépollution

Centre d'intérêt motorisation

Nature du document Professeur **SYNTHESE**

SAVOIRS ASSOCIES S31.4


LES GAZ D'ECHAPPEMENT

MVM

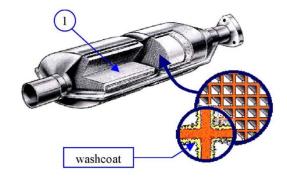
Le démarrage à froid, la recherche de la puissance... font que la combustion n'est jamais parfaite.

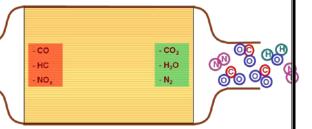
Les gaz d'échappement contiennent des substances plus ou moins polluantes et nocives.

Constitution

POLLUANTS		ORIGINE	EFFETS	
MONXYDE DE CARBONE	<u>co</u>	Provient d'un mélange trop riche (trop d'essence ou pas assez d'air)	Inodore, incolore, se fixe à l'hémoglobine du sang. Risque de mort par asphyxie.	
HYDROCARBURES IMBRULES	<u>HC</u>	Proviennent d'un mélange trop riche ou d'une combustion incomplète.	Inodores, ils entraînent des difficultés respiratoires. Certains composés sont cancérigènes. Ils participent à l'effet de serre.	
OXYDES D'AZOTE	<u>NO_x</u>	lls résultent de mélanges pauvres et de température de combustion élevées.	Forte toxicité pulmonaire. Il est responsable des pluies acides et participe à l'effet de serre.	
PARTICULES		Résidus de combustion, ce sont les suies responsables des fumées noires des moteurs diesels.	Ces composés sont suspectés d'être cancérigènes.	
<u>OZONE</u>	<u>O</u> 3	Il n'est pas directement émis par les moteurs. Il se produit par réaction photochimique de certains HC et NO _x sous l'action des rayons solaires.	Irritations des voies respiratoires et des muqueuses oculaires.	
GAZ CARBONIQUE	<u>CO</u> 2	Provient de la combustion des énergies fossiles	Il est considéré comme non toxique pour l'homme à des teneurs < à 5% . Il est le principal responsables de l'effet de serre.	

DEPPOLUTION DES MOTEURS ESSENCE


Epuration catalytique


Un catalyseur est constitué d'un support céramique ou acier (1) recouvert d'alumine poreuse (washcoat) pour augmenter la surface de traitement des gaz. Dans les cellules du bloc, sont parsemés des microcristaux de métaux précieux (~ 1,4 g/l) :

- Platine - Palladium - Rhodium

En présence des ces métaux, les gaz d'échappement subissent une réaction chimique et sont rendus inoffensifs.

Les oxydes d'azote (NO_x) sont réduits en azote. Par oxydation avec l'oxygène récupéré, le CO et transformé en CO₂ et les HC en CO₂ et H₂O. La réaction chimique s'amorce pour une température de ~ 250°C. La pleine efficacité du catalyseur est obtenue lorsque la température atteint ~ 450°C. Si la température dépasse 1000°C (à cause de ratés d'allumage, mélange trop pauvre…) le catalyseur risque d'être détruit.

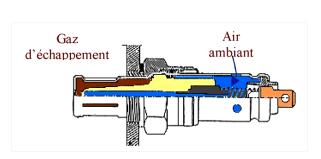
La dépollution

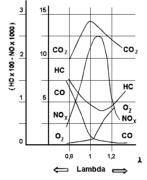
SYNTHESE

SAVOIRS ASSOCIES S31.4

Centre d'intérêt

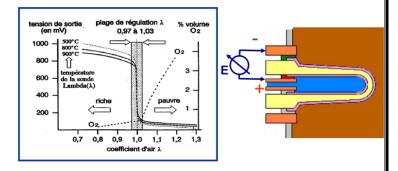
Nature du document Professeur

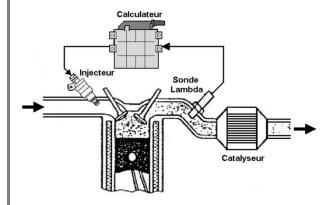

REGULATION LAMBDA


MVM

motorisation

Les catalyseurs peuvent éliminer plus de 90% des polluants à condition que le dosage soit maintenu dans une plage très étroite autour du dosage stœchiométrique (1/14,7). Le mélange air carburant est caractérisé par le coefficient d'air « Lambda » λ





La sonde Lambda mesure la teneur en oxygène résiduel des gaz d'échappement. Le signal délivrée par la sonde est de :

- 0 à 300 mV quand le mélange est pauvre
- 600 à 1000 mV quand le mélange est riche La valeur moyenne du rapport air / essence est maintenue dans la plage ou le catalyseur est le plus efficace (λ de 0,97 à 1,03).


Si le mélange est pauvre, la sonde délivre une tension inférieure à la tension de référence (U < 400 mV)

Le calculateur enrichi le mélange.

Le mélange devenant riche, la sonde va délivrer une tension supérieure à la tension de référence (U > 600 mV)

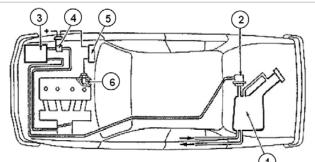
Le calculateur va appauvrir le mélange.

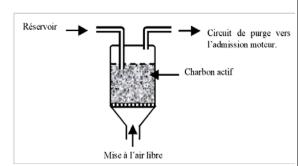
Les hydrocarbures ne s'évaporent pas dans l'atmosphère que par le biais des gaz d'échappement, mais aussi par les orifices d'aération des réservoirs. L'essence sans plomb présentant un taux de benzène important, les vapeurs ne doivent pas être rejetées à l'air libre.

La dépollution

Centre d'intérêt motorisation

SAVOIRS ASSOCIES S31.4


Nature du document Professeur


CANISTER

SYNTHESE

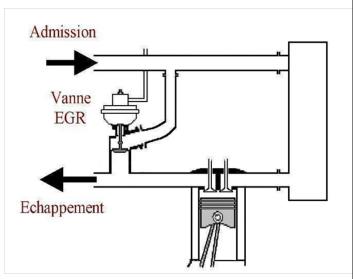
Le canister est un "piège" à charbon actif qui absorbe les vapeurs de carburant

1	Réservoir		
2	Clapet		
3	Canister		
4	Électrovanne		
5	Module électronique		
6	Sonde de température		

Les vapeurs sont canalisées du réservoir jusque dans le canister. Celui-ci sera purgé lors du fonctionnement du moteur et les vapeurs brûlées dans la chambre de combustion.

DEPOLUTION DES MOTEURS DIESEL

Epuration catalytique


Un catalyseur d'oxydation diminue CO, HC et particules:

- baisse de plus de 50 % du CO (déjà très bas sur les diesels)
- réduction de 50 % des HC
- diminution de 35 % des particules

À cause du fonctionnement en excès d'air des moteurs diesels, les pots catalytiques ne peuvent réduire les NOx

Recirculation des gaz d'échappement

La recirculation des gaz d'échappement permet de réduire les émissions de NOx L'E.G.R. réintroduit à l'admission une certaine quantité de gaz brûlés réduisant ainsi la quantité d'oxygène dans la chambre de combustion. La température de la combustion diminue, les NOx aussi.

La dépollution

SYNTHESE

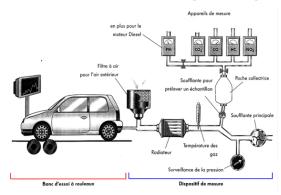
SAVOIRS ASSOCIES S31.4

MVM

motorisation

Nature du document **Professeur**

DEPOLUTION DES MOTEURS DIESEL


Filtre a particules

Associé à un pré catalyseur, le FAP est une structure en céramique poreuse qui permet de piéger et de brûler les particules contenues dans les gaz d'échappement.

La régénération du FAP est assurée par le calculateur common-rail. Un additif à base de sérine est injectée dans le réservoir de carburant. Cet additif abaisse la température naturelle de combustion des particules.

NORMES ANTIPOLLUTION

Les émissions de gaz d'échappement d'un véhicule sont mesurées en vue de son homologation à l'aide d'un banc à rouleaux. Un cycle de conduite défini à l'avance est réalisé sur le banc. Le système de mesure assure la saisie des quantités des différents polluants émis.

Moteur essence							
Normes	со	НС	NO _X				
Euro III 01 / 2000	2,3	0,20	0,15				
Euro IV 01 / 2005	1,00	0,10	0,08				

Moteurs diesels								
Normes	со	HC + NO _X	NO _X	Particules				
Euro III 01 / 2000	0,64	0,56	0,5	0,05				
Euro IV 01 / 2005	0,50	0,30	0,25	0,025				

Normes réparation

Moteurs essence non catalysés : mis en circulation avant le 01/10/86: 4,5 % de CO maxi. mis en circulation après le 01/10/86: 3,5 % de CO maxi.

Moteurs essence catalysés:

Moteurs diesels:

Les gaz ne sont pas analysés, seul l'importance de la quantité de fumée est mesurée. Les valeurs d'opacité sont données en « coefficient d'absorption de lumière m-1 »

moteurs atmosphériques : 2,5 m-1 maxi.

moteurs turbocompressés: 3 m-

1 maxi.

-4/4-